916 research outputs found

    A Deficiency Problem of the Least Squares Finite Element Method for Solving Radiative Transfer in Strongly Inhomogeneous Media

    Full text link
    The accuracy and stability of the least squares finite element method (LSFEM) and the Galerkin finite element method (GFEM) for solving radiative transfer in homogeneous and inhomogeneous media are studied theoretically via a frequency domain technique. The theoretical result confirms the traditional understanding of the superior stability of the LSFEM as compared to the GFEM. However, it is demonstrated numerically and proved theoretically that the LSFEM will suffer a deficiency problem for solving radiative transfer in media with strong inhomogeneity. This deficiency problem of the LSFEM will cause a severe accuracy degradation, which compromises too much of the performance of the LSFEM and makes it not a good choice to solve radiative transfer in strongly inhomogeneous media. It is also theoretically proved that the LSFEM is equivalent to a second order form of radiative transfer equation discretized by the central difference scheme

    Characterization of bulk hexagonal boron nitride single crystals grown by the metal flux technique

    Get PDF
    The optical and physical properties of hexagonal boron nitride single crystals grown from a molten metal solution are reported. The hBN crystals were grown by precipitation from a nickel-chromium flux with a boron nitride source, by slowly cooling from 1500 °C at 2-4°C/h under a nitrogen flow at atmospheric pressure. The hBN crystals formed on the surface of the flux with an apparent crystal size up to 1 to 2 mm in diameter. Individual grains were as large as 100-200 µm across. Typically, the flakes removed from the metal were 6 to 20 µm thick. Optical absorption measurements suggest a bandgap of 5.8 eV by neglecting the binding energy of excitons in hBN. The highest energy photoluminescence peak was at 5.75 eV at room temperature. The hBN crystals typically had a pit density of 5 x 10⁶ cm⁻² after etching in a molten eutectic mixture of potassium hydroxide and sodium hydroxide. The quality of these crystals suggests they are suitable as substrates for two dimensional materials such as graphene and gallium nitride based devices

    Tunnelling through black rings

    Full text link
    Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton gravity theory is analyzed by use of the Parikh-Wilczek tunnelling method. To get the correct tunnelling amplitude and emission rate, we adopted and developed the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitute a unified approach to the tunnelling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agree exactly with the results obtained via the classical surface gravity method and the quasilocal formalism.Comment: 10 pages, V2: various modifications throughout the text, plus a lot of newly added reference

    Global Incidence and mortality of oesophageal cancer and their correlation with socioeconomic indicators temporal patterns and trends in 41 countries

    Get PDF
    Oesophageal cancers (adenocarcinomas [AC] and squamous cell carcinomas [SCC]) are characterized by high incidence/mortality in many countries. We aimed to delineate its global incidence and mortality, and studied whether socioeconomic development and its incidence rate were correlated. The age-standardized rates (ASRs) of incidence and mortality of this medical condition in 2012 for 184 nations from the GLOBOCAN database; national databases capturing incidence rates, and the WHO mortality database were examined. Their correlations with two indicators of socioeconomic development were evaluated. Joinpoint regression analysis was used to generate trends. The ratio between the ASR of AC and SCC was strongly correlated with HDI (r = 0.535 [men]; r = 0.661 [women]) and GDP (r = 0.594 [men]; r = 0.550 [women], both p < 0.001). Countries that reported the largest reduction in incidence in male included Poland (Average Annual Percent Change [AAPC] = −7.1, 95%C.I. = −12,−1.9) and Singapore (AAPC = −5.8, 95%C.I. = −9.5,−1.9), whereas for women the greatest decline was seen in Singapore (AAPC = −12.3, 95%C.I. = −17.3,−6.9) and China (AAPC = −5.6, 95%C.I. = −7.6,−3.4). The Philippines (AAPC = 4.3, 95%C.I. = 2,6.6) and Bulgaria (AAPC = 2.8, 95%C.I. = 0.5,5.1) had a significant mortality increase in men; whilst Columbia (AAPC = −6.1, 95%C.I. = −7.5,−4.6) and Slovenia (AAPC = −4.6, 95%C.I. = −7.9,−1.3) reported mortality decline in women. These findings inform individuals at increased risk for primary prevention

    Observation of microstructure of silty sand obtained from gelpush sampler and reconstituted sample

    Get PDF
    Observation of microstructure study of natural sand i.e. clean sand with fines (particles adjudged to be smaller than 75μm) content < 5% (Gel Push A) and silty sand with 35% fine content (Gel Push B) obtained by gel-push sampling was described. In addition, some observations from reconstituted samples prepared by dry pluviation and moist tamping were presented. Microstructures were investigated statistically by measuring particle orientation. It was evidence that natural sand (either gel push A and B) have a preferred orientation i.e. horizontally oriented. Similar particle orientation trend were observed by dry pluviated sample. Undisturbed and dry pluviated samples shows that they are anisotropic in terms of particles orientation. Moist tamped sample on the other hand, results in fairly random orientation with a slight bias towards vertical, thus does not replicate natural sand fabric

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    Periodic cells for large-scale problem initialization

    Get PDF
    In geotechnical applications the success of the discrete element method (DEM) in simulating fundamental aspects of soil behaviour has increased the interest in applications for direct simulation of engineering scale boundary value problems (BVP’s). The main problem is that the method remains relatively expensive in terms of computational cost. A non-negligible part of that cost is related to specimen creation and initialization. As the response of soil is strongly dependant on its initial state (stress and porosity), attaining a specified initial state is a crucial part of a DEM model. Different procedures for controlled sample generation are available. However, applying the existing REV-oriented initialization procedures to such models is inefficient in terms of computational cost and challenging in terms of sample homogeneity. In this work a simple but efficient procedure to initialize large-scale DEM models is presented. Periodic cells are first generated with a sufficient number of particles matching a desired particle size distribution (PSD). The cells are then equilibrated at low-level isotropic stress at target porosity. Once the cell is in equilibrium, it is replicated in space in order to fill the model domain. After the domain is thus filled a few mechanical cycles are needed to re-equilibrate the large domain. The result is a large, homogeneous sample, equilibrated under prescribed stress at the desired porosity. The method is applicable to both isotropic and anisotropic initial stress states, with stress magnitude varying in space

    Determination of energy-band offsets between GaN and AlN using excitonic luminescence transition in AlGaN alloys

    Get PDF
    We report the determination of the energy-band offsets between GaN and AlN using the linewidth (full width at half maximum) of an extremely sharp excitonic luminescence transition in Alx Ga1-x N alloy with x=0.18 at 10 K. Our sample was grown on C -plane sapphire substrate by metal-organic chemical-vapor deposition at 1050 °C. The observed value of the excitonic linewidth of 17 meV is the smallest ever reported in literature. On subtracting a typical value of the excitonic linewidth in high-quality GaN, namely, 4.0 meV, we obtain a value of 13.0 meV, which we attribute to compositional disorder. This value is considerably smaller than that calculated using a delocalized exciton model [S. M. Lee and K. K. Bajaj, J. Appl. Phys. 73, 1788 (1993)]. The excitons are known to be strongly localized by defects and/or the potential fluctuations in this alloy system. We have simulated this localization assuming that the hole, being much more massive than the electron, is completely immobile, i.e., the hole mass is treated as infinite. Assuming that the excitonic line broadening is caused entirely by the potential fluctuations experienced by the conduction electron, the value of the conduction-band offset between GaN and AlN is determined to be about 57% of the total-band-gap discontinuity. Using our model we have calculated the variation of the excitonic linewidth as a function of Al composition in our samples with higher Al content larger than 18% and have compared it with the experimental data. We also compare our value of the conduction-band offset with those recently proposed by several other groups using different techniques. © 2006 American Institute of Physics

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
    corecore