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1. INTRODUCTION

Singular nonlinear boundary value problems occur in a variety of
applications and often only their positive solutions are important.
Consequently, they have been studied by many authors [1, 3, 4, 6, 8-10].

In a recent paper [6], Gomes and Sprekels proved that the singular
nonlinear boundary value problem

—u' () =k(Ou()] " [w'(1)]°  te(0, 1), (1)
u(0)=0,  u(1)=Du(1), (2L)

has a positive solution, which belongs to W%'(0, 1), under the following
hypotheses:

(I) «>0,6¢e[a,1+a), and D> 1 are given real numbers,

(I1) k(1) is a nonnegative measurable function defined on [0, 1] such
that

0<Ll k(1)1 dt < +. 3)

They converted the above problem into an equivalent fixed point equation
and then treated the equation by applying a modified version of
Krasonselskii’'s Theorem on operators compressing a cone in a Banach
space. Unfortunately, they have not been able to treat the case o€ (0, a).
Moreover, they pointed out that the problem (1)}-(2L) with o<1 was
studied in [2, 5] by using another kind of approach and explained in some
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detail that problems such as the problem (1)-(2L) appear in the study of
similarity solutions for the equation

0, =V (K(0) VO] V8),

which arises in different physical situations.
In this paper we consider a more general singular nonlinear boundary
value problem of the form

—u'(y=k()[u(n)] " [u'()]°, 1e(0, 1), (1)
u(0)=0, u(1)=@d(u'(1)), (2N)
and only make the following hypotheses:

(H,) >0 and o<1+ a are given real numbers,

(H,) k(¢) is a nonnegative measurable function defined on [0, 1]
such that

0<f0l k(1) dt < +c0, (4)

(H,) (f) is a positive continuous function defined in (0, +0) such
that

lim dB) B '=D>1, (5)
im[@(B)]° B “=0 if o>1
Blo
im[®(f)]*log f=0 if o=1 (6)
$1l0

lim®(B)=0 if o<l
glo

Here the real number 0 <0 can be allowed. It is clear that the problem
(1}-(2L) is a special case of the problem (1)-(2N).

In this paper we establish the existence of positive solutions to the
problem (1)-(2N), by using the shooting method. All the technical
arguments are elementary.

2. PROPERTIES OF POSITIVE SOLUTIONS

A function u(7) is called a positive solution to the problem (1}-(2N), if
it satisfies the following conditions:
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(a) u(1)1s continuous on [0, 1] and positive in (0, 1],

(b) (1) exists and is continuous in (0, 1],

(c) u"(z)exists almost everywhere and locally Lebesgue integrable in
(0, 1],

(d) u(0)=0, u(1)=&(u'(1)), and

(e) Equation (1) holds almost everywhere in (0, 1).

Let u(r) be a positive solution to the problem (1)}-(2N). Then u(t) is a
continuous, increasing, concave function defined on [0, 1] and hence

m(l)y<u(t)<u(l) for all re[0, 1], (7)
and when
w'(0)=Ilim u'(7)
110
exists,
u(t)y < ' (0) for all re[0,1]. (8)
Moreover,
1
0<u(1)=f w'(1) dr
0
1 1
- <u'(1)—f W' (s) ds> di
4 t
1
=u'(1)— f su”(s) ds,
4]
ie.,

u(l)—u'(l)zj.l s |u”(s)| ds. (9)

Applying integration by parts, the equality (9) can be written as
! 1
u(l)—u’(t)=J s{u"(s)| ds—j su"(s) ds
4] t

=f, slu"(s)l ds+ ' (1) —u(t)+u(1y—u'(1)
0



BOUNDARY VALUE PROBLEMS 325

for all te [0, 1], ie,
u(t) = :u(z)+f slu"(s)lds  forall re[0,1]. (10)
0

The equalities (9) and (10) show that the function ¢ |u"(¢)| is Lebesgue
integrable on [0, 1] and the condition D> 1 is a necessary condition for
the problem (1)}-(2L) to have positive solutions. Moreover, when D=1
and k(1)=0, the problem (1)-(2L) has exactly a family of positive
solutions of the form

u(r)= 41, A>0.

We now ascertain what condition guarantees the existence of the limit
' (0)=lim u'(1).
r}0
From Eq. (1), we have

1
(6—1)

u'(0) : _
og[u,(l)J if o=1
(1)

Assume that «'(0) is finite. Then it follows from (8) that the left-hand side
of (11) is greater than or equal to

[w(©)] = [ kty1 = an,

. (W] O 7} i o1
0< [ k()[u(r)]~*di=

i.e., the condition (3) holds.
Now assume that (3) holds. Then it follows from (7) that the left-hand
side of (11) is less than or equal to

1
[u(1)] j k() t—* dr.
0
This fact implies that »’(0) is finite. In this case
1 1
0<| Jwnldi=] knlu(n] = [w(n]" d
0 4]

<O+ [W()]”
[u(1)]

1
_[ k(t)yt > dr < + 0.
(V]

Here (7) has been used.
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We can summarize the above results in the following statement.

THEOREM 1. Let u(t) be a positive solution to the problem (1)}-(2N).
Then u(t) is a continuous concave function defined on [0, 1] and (7), (8), (9),
(10) hold. Moreover, a sufficient and necessary condition for u'(0) to be finite
is the condition (3); when (3} holds, |u"(t)| is Lebesgue integrable on [0, 1],
ie, ue W%'(0, 1).

3. EXISTENCE OF POSITIVE SOLUTIONS

In order to apply the shooting method, we consider an initial value
problem of the form

W' (y=v(1), 1<1,
v'(t)= —k(O)[u(n)]"* [o()]7, 1<, (12)
u(l)y=P(p), v(1) =4,

where f is a positive parameter and the hypotheses (H,), (H,), (H;) are
satisfied.

Lemma 1. For each fixed B>0, the initial value problem (12) has a
unique solution which is denoted by (u(t; 8), v(t; B)) and depends continuously
on B. If the maximal interval of existence for the solution is denoted by
(x, 1], then either x=0 or lim,, u(t; B)=0 or lim , v(s; B)= +o0.

Proof. The proof can be found in {7].

Evidently, if there exists a §>0 such that the maximal interval of
existence for the solution (u(r; ), v(t; B)) is the interval (0,1] and
u(0; $)=0, then u(t; f) is a positive solution to the problem (1)-(2N).

We are now in a position to prove the existence of positive solutions.

LEMMA 2. There exists a positive number f, such that w(0;f)>0
whenever 2 f8,.

Proof. It is easy to verify that if a function u(z) is a positive solution to
the integral equation

u(t) = (Tu)(1)

BB~ [ (B T+ L (1= 0) k(s)[u(s)] "* ds) VO~ dx, if o #1
- {w)—j: Bexpl([’ k(s)[uls)] * ds) dx, ifo=1
(13)
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then (u(t), v(r))=: (u(2), (Tu) (¢)) is a solution to the problem (12) and
vice versa.
Define

u(t; B)= (D —1)/2,
un(t;ﬂ)=(Tun—](';B))(t)9 n=132’ 39
By virtue of the hypotheses (H,), (H,), (H;), we have

wu(p)p—->D—1+1, as f— +oo.

Consequently, there exists a §, >0 such that for all re [0, 1],
u(1; B) 2 (D — 1D)B/2 = uo(t; B)
whenever f = f,. Further, it is readily verified that
uo(t; By<u(t; B)< -+ <uy(5,B)< -+ < P(P)
and hence, for each fixed = f,

u(t; )= lim u,(; ) = (Tu)(t; B), te [0, 1]

Set v(t; B)=u'(1; B). Then (u(z; §), v(¢; B)) is a solution to the problem
(12) and u(0; 8) > 0. The lemma is proved.

LEMMA 3. There exists a positive number B, such that the endpoint 1t =0
is not in the maximal interval of existence for the solution (u(t; B), v(t; B))
whenever B < f,.

Proof. We now distinguish two cases.

Case 0 >1. Choose a §,> 0 such that
1
[®(B)) B! "<(a=1) [ k(s)ds  for all <Py

by the hypothesis (H,). If the endpoint ¢ =0 is in the maximal interval of
existence for the solution (u(z; B), v(¢; B)) with B < f,, then

ﬂ’f"ZJAOl (c—1)k(s)[u(s)] *ds= [P(B)] J: (6 — 1) k(s) ds.

This is impossible.
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Case 6 <1. Choose first a 6 > 0 such that
1
J‘ k(s)ds>0.
é

If #(0;$)=0, ie, +=0 is in the maximal interval of existence for the
solution, then when g =1

0<u(0; B) = <1>(,3)—fl B exp (jl k(s)[u(s)]~* ds> dx

<op)-opexp (| kOB " ds)

~op)-sexp((]' ks + Lo 10g ) Lo )

when ¢ < 1

101 - o)

0<ue =0~ [ (B4 1-a ko))

<o(m-3(1-a) [

a

k(s)ds] R [@(p)] -,

As f — 0 the right-hand sides of both inequalities above tend to — oo by
the hypothesis (H,). Therefore, there is a f, > 0 such that for all 8 < f, the
right-hand sides are less than zero. This is also impossible, and hence the
proof is complete.

Define the set
E=:{f>0;u(0;)>0}.

Lemmas | and 2 tell us that the set E is open and nonempty, while
Lemma 3 asserts that 8,>0 is not in E. Consequently,

p*=:inf E> 0.

Choose a sequence {f,} < E such that §, — p* as n - oc. By Lemma 1,
we have

u(0; p*)= lim u(0; g,)=0.
We claim that u(0; *)=0. If «(0; $*)>0, then * € E, which contradicts

the definition of f*.
Summarizing, we have the following statement.
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THEOREM 2. Suppose that the hypotheses (H,), (H,), (H,) hold. Then
the problem (1)-(2N}) has at least one positive solution.

The condition ¢ < 1 4+« is the best possible in the following sense. When
a>1, 6>14+a and k(r)=1, the problem (1)-(2L) has no positive
solutions (see [6, Remark 10]). When «>0, 6 =1+«, and &(8)= Dg,
D > 1, the problem (12) is converted into the equivalent problem

U'(e)=v(), <1,
Viiy= —k(OLU] > [V(n)]°,  1<], (14)
u(t)y=D, V(1)=1,

by introducing the change of dependent variables

u(t)=pBU(r),  v(t)=BV(1), B>0.

Using the shooting method, we can prove that there is a unique D> 1
such that the problem (14) has a unique solution (U(r), ¥(¢)) which
satisfies U(0)=0, provided « j(‘, k(s)ds> 1. This shows when D= D, the
problem (1)-(2L) has a family of solutions u(t)= U(¢), f>0, and when
D >1 and D # D, the problem (1)}-(2L) has no solutions.
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