11 research outputs found

    Parameter adaptive model predictive control strategy of NPC three-level virtual synchronous generator

    Get PDF
    The Virtual Synchronous Generator (VSG) emulates the characteristics of a synchronous generator to provide inertia and damping for renewable energy systems. In the case of using the NPC three-level converter structure, traditional control methods require complex dual-loop control and internal PI parameter tuning. Furthermore, although fixed-parameter VSG control can provide inertia and damping when a significant power load is switched in an islanded microgrid, it cannot guarantee frequency regulation performance. To address these issues, this paper proposes an NPC three-level VSG parameter adaptive finite control set model predictive control strategy. This method eliminates the need for dual-loop control and PI parameter tuning. By incorporating angular velocity deviation and its rate of change into adaptive adjustment, a Tracking-Differentiator (TD) is designed to calculate the rate of change of angular velocity. This approach avoids frequent fluctuation of adaptive parameters during load power switching and improves the frequency stability of the microgrid. The effectiveness of the proposed strategy is validated through simulation and experimental verification

    Since 2015 the SinoGerman research project SIGN supports water quality improvement in the Taihu region, China

    Get PDF
    The Taihu (Tai lake) region is one of the most economically prospering areas of China. Due to its location within this district of high anthropogenic activities, Taihu represents a drastic example of water pollution with nutrients (nitrogen, phosphate), organic contaminants and heavy metals. High nutrient levels combined with very shallow water create large eutrophication problems, threatening the drinking water supply of the surrounding cities. Within the international research project SIGN (SinoGerman Water Supply Network, www.water-sign.de), funded by the German Federal Ministry of Education and Research (BMBF), a powerful consortium of fifteen German partners is working on the overall aim of assuring good water quality from the source to the tap by taking the whole water cycle into account: The diverse research topics range from future proof strategies for urban catchment, innovative monitoring and early warning approaches for lake and drinking water, control and use of biological degradation processes, efficient water treatment technologies, adapted water distribution up to promoting sector policy by good governance. The implementation in China is warranted, since the leading Chinese research institutes as well as the most important local stakeholders, e.g. water suppliers, are involved

    Epidemiology of Influenza-like Illness and Respiratory Viral Etiology in Adult Patients in Taiyuan City, Shanxi Province, China between 2018 and 2019

    No full text
    To determine the epidemiological status of influenza and understand the distribution of common respiratory viruses in adult patients with influenza-like illness (ILI) cases in Taiyuan City, Shanxi Province, China, epidemiological data between 2018 and 2019 were retrieved from the China Influenza Surveillance Information System, and two sentinel ILI surveillance hospitals were selected for sample collection. All specimens were screened for influenza virus (IFV) and the other 14 common respiratory viruses using real-time polymerase chain reaction. The results of the 2-year ILI surveillance showed that 26,205 (1.37%) of the 1,907,869 outpatients and emergency patients presented with ILI, with an average annual incidence of 297.75 per 100,000 individuals, and ILI cases were predominant in children <15 years (21,348 patients, 81.47%). Of the 2713 specimens collected from adult patients with ILI, the overall detection rate of respiratory viruses was 20.13%, with IFV being the most frequently detected (11.79%) and at a relatively lower rate than other respiratory viruses. Further subtype analysis indicated an alternating or mixed prevalence of H1N1 (2009), H3N2, Victoria, and Yamagata subtypes. This study provides a baseline epidemiological characterization of ILI and highlights the need for a nationwide detection and surveillance system for multiple respiratory pathogens

    Nitrogen Removal and N<sub>2</sub>O Accumulation during Hydrogenotrophic Denitrification: Influence of Environmental Factors and Microbial Community Characteristics

    No full text
    Hydrogenotrophic denitrification is regarded as an efficient alternative technology of removing nitrogen from nitrate-polluted water that has insufficient organics material. However, the biochemical process underlying this method has not been completely characterized, particularly with regard to the generation and reduction of nitrous oxide (N<sub>2</sub>O). In this study, the effects of key environmental factors on hydrogenotrophic denitrification and N<sub>2</sub>O accumulation were investigated in a series of batch tests. The results show that nitrogen removal was efficient with a specific denitrification rate of 0.66 kg N/(kg MLSS·d), and almost no N<sub>2</sub>O accumulation was observed when the dissolved hydrogen (DH) concentration was approximately 0.40 mg/L, the temperature was 30 °C, and the pH was 7.0. The reduction of nitrate was significantly affected by the pH, temperature, inorganic carbon (IC) content, and DH concentration. A considerable accumulation of N<sub>2</sub>O was only observed when the pH decreased to 6.0 and the temperature decreased to 15 °C, where little N<sub>2</sub>O accumulated under various IC and DH concentrations. To determine the microbial community structure, the hydrogenotrophic denitrifying enrichment culture was analyzed by Illumina high-throughput sequencing, and the dominant species were found to belong to the genera <i>Paracoccus</i> (26.1%), <i>Azoarcus</i> (24.8%), <i>Acetoanaerobium</i> (11.4%), <i>Labrenzia</i> (7.4%), and <i>Dysgonomonas</i> (6.0%)

    N-Acetylglucosamine mitigates lung injury and pulmonary fibrosis induced by bleomycin

    No full text
    Lung injury and pulmonary fibrosis contribute to morbidity and mortality, and, in particular, are characterized as leading cause on confirmed COVID-19 death. To date, efficient therapeutic approach for such lung diseases is lacking. N-Acetylglucosamine (NAG), an acetylated derivative of glucosamine, has been proposed as a potential protector of lung function in several types of lung diseases. The mechanism by which NAG protects against lung injury, however, remains unclear. Here, we show that NAG treatment improves pulmonary function in bleomycin (BLM)-induced lung injury model measured by flexiVent system. At early phase of lung injury, NAG treatment results in silenced immune response by targeting ARG1+ macrophages activation, and, consequently, blocks KRT8+ transitional stem cell in the alveolar region to stimulate PDGF Rβ+ fibroblasts hyperproliferation, thereby attenuating the pulmonary fibrosis. This combinational depression of immune response and extracellular matrix deposition within the lung mitigates lung injury and pulmonary fibrosis induced by BLM. Our findings provide novel insight into the protective role of NAG in lung injury

    Chitosan oligosaccharide attenuates acute kidney injury and renal interstitial fibrosis induced by ischemia-reperfusion

    No full text
    AbstractAcute kidney injury (AKI) and renal interstitial fibrosis are global clinical syndromes associated with high morbidity and mortality. Renal ischemia-reperfusion (I/R) injury, which commonly occurs during surgery, is one of the major causes of AKI. Nevertheless, an efficient therapeutic approach for AKI and the development of renal interstitial fibrosis is still lacking due to its elusive pathogenetic mechanism. Here, we showed that chitosan oligosaccharide (COS), a natural oligomer polysaccharide degraded from chitosan, significantly attenuates I/R-induced AKI and maintains glomerular filtration function by inhibiting oxidative stress, mitochondrial damage, and excessive endoplasmic reticulum stress both in vitro and in vivo. In addition, long-term administration of COS can also attenuate the proliferation of myofibroblasts, mitigate extra cellular matrix deposition, and thus inhibit the transition of AKI to chronic kidney disease through participating in metabolic and redox biological processes. Our findings provide novel insights into the protective role of COS against acute kidney injury
    corecore