8 research outputs found

    Micro-Fulfillment Center Inventory Policies for Digital Grocery Ecosystem

    Get PDF
    As a new phenomenon of grocery business digital transition, the micro-fulfillment center (MFC) requires further exploration of its management issues. This study aims to address the MFC assortment and inventory decision problem for the digital grocery ecosystem. With the goal of maximizing the profit, we first propose an MFC inventory decision framework based on the Markov decision process. Under this decision framework, we analyze various inventory decision scenarios, including single-period, multi-period, deterministic demand, stationary demand distribution, and varying demand distribution cases. To solve the problem under these scenarios, we propose several effective heuristics and algorithms. Experimental results show that the proposed heuristic policies outperform the benchmark significantly. Meanwhile, based on the critical findings, we also provide management insights for the MFC inventory problem. This study contributes to the research and practice in the field of grocery business digital transformation and digital ecosystems

    Two-fluid Modeling of Geldart A Particles in Gas-solid Bubbling Fluidized Bed: Assessment of Drag Models and Solid Viscosity Correlations

    No full text
    In this work the influences of solid viscosity and the way to scale-down traditional drag models on the predicted hydrodynamics of Geldart A particles in a lab-scale gas-solid bubbling fluidized bed are investigated. To evaluate the effects of drag models, the modified Gibilaro et al. drag model (constant correction factor) and the EMMS drag model (non-constant correction factor) are tested. And the influences of solid viscosity are assessed by considering the empirical model proposed by Gidaspow et al. (1997, Turbulence, Viscosity and Numerical Simulation of FCC Particles in CFB. Fluidization and Fluid-particle Systems, AIChE Annual Meeting, Los Angeles, 58-62) and the models based on kinetic theory of granular flow (KTGF) with or without frictional stress. The resulting hydrodynamics by incorporating the different combinations of the drag model and solid viscosity model into two-fluid model (TFM) simulations are compared with the experimental data of Zhu et al. (2008, Detailed Measurements of Flow Structure inside a Dense Gas-Solids Fluidized Bed." Powder Technological 180: 339-349). The simulation results show that the predicted hydrodynamics closely depends on the setting of solid viscosity. When solid viscosity is calculated from the empirical model of Gidaspow et al., both drag models can reasonably predict the radial solid concentration profiles and particle velocity profiles. When the KTGF viscosity model without frictional stress is adopted, the EMMS drag model significantly overestimates the bed expansion, whereas the modified Gibilaro et al. drag model can still give acceptable radial solid concentration profiles but over-estimate particle upwards and downwards velocity. When KTGF viscosity model with frictional stress is chosen, both drag models predict the occurrence of slugging. At this time, the particle velocity profiles predicted by EMMS drag model are still in well agreement with the experimental data, but the bed expansion is under-estimated

    CFD modeling the hydrodynamics of binary particle mixture in pseudo-2D bubbling fluidized bed: Effect of model parameters

    No full text
    The hydrodynamics of binary coal-sand mixture in a pseudo-2D rectangular bubbling fluidized bed (0.385 m x 0.005 m x 0.128 m) was simulated using the multi-fluid Eulerian model incorporating the kinetic theory of granular flow. Parametric studies of the boundary wall condition, particle-particle restitution coefficient, friction packing limit, as well as transport equation for granular temperature were performed to investigate their influences on the predicted mixing/segregation behavior. The CFD simulation results demonstrated that the predicted mixing behavior was closely related to the expression for granular temperature transport equation and specularity coefficient. When the full transport equation for granular temperature was adopted, the predicted mixing degree decreased with the increase of specularity coefficient. And the best agreement between simulation results and experimental data was achieved when specularity coefficient was equal to 1.0. Nevertheless, when the algebraic transport equation for granular temperature was adopted, the system was always predicted in well-mixing rather than segregation state. Under the full transport equation for granular temperature and the no slip boundary wall condition, the predicted mixing degree decreased with the increase of the particle-particle restitution coefficient and frictional packing limit. The supplementary simulations indicated that for the considered gas-solid system there exist a critical bed thickness larger than which the system was in well-mixing state and the simulation results were independent from the investigated parameters. The hydrodynamic analysis indicated that the reduction of bubble size and the solid axial movement could be the mechanism responsible for the occurrence of axial segregation. (C) 2016 Elsevier B.V. All rights reserved.</p

    A selective phosphine-based fluorescent probe for nitroxyl in living cells

    No full text
    [Display omitted] A novel fluorescein-based fluorescent probe for nitroxyl (HNO) based on the reductive Staudinger ligation of HNO with an aromatic phosphine was prepared. This probe reacts with HNO derived from Angeli’s salt and 4-bromo Piloty’s acid under physiological conditions without interference by other biological redox species. Confocal microscopy demonstrates this probe detects HNO by fluorescence in HeLa cells and mass spectrometric analysis of cell lysates confirms this probe detects HNO following the proposed mechanism

    Ferritin light chain deficiency-induced ferroptosis is involved in preeclampsia pathophysiology by disturbing uterine spiral artery remodelling

    No full text
    The proteomic analysis from samples of patients with preeclampsia (PE) displayed a low level of ferritin light chains (FTL), but we do not know what the significance of reduced FTL in PE pathophysiology is. To address this question, we first demonstrated that FTL was expressed in first- and third-trimester cytotrophoblasts, including extravillous trophoblasts (EVTs), of the human placenta. Furthermore, a pregnant rat model of FTL knockdown was successfully established by intravenously injecting adenoviruses expressing shRNA targeting FTL. In pregnant rats with downregulated FTL, we observed PE-like phenotypes and impaired spiral arterial remodelling, implying a causal relationship between FTL downregulation and PE. Blocking ferroptosis with ferrostatin-1 (Fer-1) significantly rescued the above PE-like phenotypes in pregnant rats with FTL knockdown. Furthermore, using trophoblast cell line and chorionic villous explant culture assays, we showed that FTL downregulation induced cell death, especially ferroptosis, resulting in defective uterine spiral artery remodelling. Eventually, this conclusion from the animal model was verified in PE patients’ placental tissues. Taken together, this study revealed for the first time that FTL reduction during pregnancy triggered ferroptosis and then caused defective uterine spiral artery remodelling, thereby leading to PE

    A selective phosphine-based fluorescent probe for nitroxyl in living cells

    No full text
    A novel fluorescein-based fluorescent probe for nitroxyl (HNO) based on the reductive Staudinger ligation of HNO with an aromatic phosphine was prepared. This probe reacts with HNO derived from Angeli’s salt and 4-bromo Piloty’s acid under physiological conditions without interference by other biological redox species. Confocal microscopy demonstrates this probe detects HNO by fluorescence in HeLa cells and mass spectrometric analysis of cell lysates confirms this probe detects HNO following the proposed mechanism
    corecore