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Abstract 
As a new phenomenon of grocery business digital transition, the micro-fulfillment center 
(MFC) requires further exploration of its management issues. This study aims to address 
the MFC assortment and inventory decision problem for the digital grocery ecosystem. 
With the goal of maximizing the profit, we first propose an MFC inventory decision 
framework based on the Markov decision process. Under this decision framework, we 
analyze various inventory decision scenarios, including single-period, multi-period, 
deterministic demand, stationary demand distribution, and varying demand distribution 
cases. To solve the problem under these scenarios, we propose several effective heuristics 
and algorithms. Experimental results show that the proposed heuristic policies 
outperform the benchmark significantly. Meanwhile, based on the critical findings, we 
also provide management insights for the MFC inventory problem. This study contributes 
to the research and practice in the field of grocery business digital transformation and 
digital ecosystems. 

Keywords: Micro-fulfillment center, last-mile delivery, inventory policy, omnichannel 
retail, digital grocery ecosystem 

 

Introduction 
Amid the steady rise of e-commerce and changing customer behaviors, traditional brick-and-mortar 
retailers are increasingly adopting omnichannel customer services, such as buy online pick up in-store 
(BOPS) and buy online return in-store (BORS). The COVID-19 crisis has accelerated this trend dramatically 
over the past three years. According to the Quarterly E-Commerce Report Historical Data,1 e-commerce 
sales as a share of total retail sales in the third quarter of 2022 were 32% higher than before the pandemic 
(in the third quarter of 2019). For physical retailers, adopting online channels has become a survival 
requirement. Omnichannel transformation not only helps retailers attract new customers from different 
channels (Gao & Su, 2017b), but it also allows retailers to integrate all channels into one seamless 
experience, which can increase customer loyalty and repeat purchases (Lazaris & Vrechopoulos, 2014; Bell 
et al., 2018; Kumar et al., 2019). 

 
1 https://www.census.gov/retail/ecommerce/historic_releases.html 
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With the rising of digital transformation in grocery business, online channels also benefit from brick-and-
mortar stores in the race for same-day and instant delivery, such as one-hour or 30-minute delivery. Faster 
delivery is becoming the new norm, with 90% of consumers expecting 2-to-3 day shipping as a baseline 
expectation, and 30% expecting same-day delivery (McCabe & Custard, 2022). The World Economic Forum 
reports that same-day and instant delivery already account for over 10% of parcel deliveries in China, and 
are projected to reach an aggregate online retail share of around 15% in the United States by 2025 (World 
Economic Forum, 2020). This shift is changing the role of physical stores in e-commerce. Retailers like 
Walmart, Target, and Best Buy are utilizing their brick-and-mortar stores instead of central distribution 
centers (CDCs) as fulfillment centers to fulfill online orders and ship from stores closer to customers, 
reducing shipping time and costs (Burns et al., 2022). 
While omnichannel retailers are utilizing brick-and-mortar stores for last-mile delivery, they face new 
challenges in fulfilling orders. One of the main obstacles is the lack of inventory visibility across channels. 
For example, a product may appear in stock to an online customer, when it has already been added to an 
in-store customer's shopping cart. Retailers estimate that their inventory accuracy is only 65%, according 
to Zebra (2018). This unreliable inventory visibility can lead to stockouts and shipping delays, resulting in 
lower customer satisfaction and fewer repeat purchases (Schwartz, 1966). Another challenge is picking 
costs. Unlike CDCs, stores are not designed for efficient order fulfillment, which can result in low picking 
efficiency. According to McKinsey (Barbee et al., 2021), in-store picking can cost 1.5 to 2 times more than 
picking at CDCs. 

Micro-fulfillment is an increasingly popular solution to overcome obstacles in the online order fulfillment 
process. Micro-fulfillment centers (MFCs) are small-scale warehouses placed in densely populated urban 
areas closer to consumers (Ladd, 2022). They can be installed inside stores, leveraging unproductive space, 
or placed as separate warehouse sites in urban areas. MFCs offer several advantages. First, they can improve 
inventory visibility by separating the MFC inventory from the store's inventory, reducing the likelihood of 
selling out of stock and avoiding shipping delays. Second, MFCs only store the items that customers want 
most in their limited space, which can make it quicker and easier to pick products and reduce labor costs. 
Third, as MFCs are located closer to customers, they can drive down the last-mile delivery costs and 
shipping time. Walmart has already piloted MFCs and has started to scale in dozens of stores (Ward, 2021). 

While using MFCs can offer several benefits for the online order fulfillment process, there is a critical 
challenge that needs to be addressed: MFC inventory decision problem. Due to the limited space in an MFC, 
omnichannel retailers can only select a portion of their Stock Keeping Units (SKUs) to be housed there. 
While selecting the most popular items is one way to approach this, retailers can further improve MFC 
performance by considering other SKU-specific factors as well. For example, two items with the same level 
of customer demand may have different volumes and picking costs. By selecting a product with a smaller 
volume and higher in-store picking cost to be placed in the MFC, retailers can expect to get higher profits. 
Furthermore, it is also important to quantify the demand uncertainty of online channels to improve the 
performance of the MFC. In a word, the MFC, as a new phenomenon of grocery business digital 
transformation, requires further exploration of its management issues. Therefore, in this paper, we 
endeavor to propose an MFC inventory decision framework and derive inventory policies for MFCs by 
taking into account the demand uncertainty.  

This paper contributes to the research and practice in the field of IS on digital transformation and digital 
ecosystems. First, we provide an MFC inventory decision framework for the digital grocery ecosystem. 
Specifically, we formulate the MFC inventory decision problem as a dynamic decision problem under the 
Markov decision process (MDP) framework. In the formulation, we recognize and define the new cost and 
profit, which differ from prior inventory studies. Second, we derive and propose several MFC inventory 
policies under different scenarios. The proposed policies can effectively avoid the curse of dimensionality, 
making them more applicable to practical scenarios. We also provide algorithms to implement the proposed 
policies. Experiment results show that our policies outperform the benchmark significantly. Third, this 
paper provides several important findings that contribute valuable management insights to the digital 
transformation practice in the grocery business field. Fourth, the study also contributes to the research on 
inventory management, as we propose an inventory decision framework and several heuristics under a new 
scenario in grocery business digital transformation.  
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Related Literature 
Inventory management for omnichannel retailers has become a growing research area (Hübner et al., 
2022). Most works in this field focus on determining optimal target inventory levels and inventory 
replenishment policies under omnichannel scenarios. For instance, Gao & Su (2017a) propose an in-store 
inventory decision model with a random demand for a single product case to determine optimal inventory 
levels. Meanwhile, Zhang et al. (2018) derive optimal pricing and inventory decisions under both the online-
only and omnichannel strategies for an online retailer. Shi et al. (2018) determine the optimal inventory 
level by considering an optimal price discount for a single durable product under the BOPS strategy with 
pre-orders. Gabor (2022) designs an inventory model considering a CDC and multiple stores to propose an 
online discounts policy. Studies have also explored omnichannel settings with independent in-store and 
online demands. For example, Lu et al. (2020) explore the optimal inventory level for fulfilling dual-channel 
demands. Saha & Bhattacharya (2021) propose a Markov model to derive optimal inventory policy by 
assuming online and in-store demands follow independent Poisson processes. Govindarajan et al. (2021) 
propose a heuristic to determine how much inventory to keep at each location and where to fulfill each 
online order from for a seasonal product with multiple facilities (i.e., stores and CDCs). Abouelrous et al. 
(2022) extend this work with a stochastic optimization approach and scenario clustering. However, these 
studies are limited to one product and do not consider assortment planning.  

In practice, managers often have to make inventory decisions for a wide range of products under limited 
resource conditions, such as limited shelf space or warehouse capacity. In such scenarios, retailers need to 
decide which products to stock in different channels, in order to maximize sales while minimizing inventory 
costs. For example, Gao & Su (2017b) reveal the types of products that are suitable for implementing a BOPS 
strategy. Geunes & Su (2020) use a consumer choice model to determine which products should be available 
in-store, online, or through both channels and their stock levels. Hense & Hübner (2022) consider customer 
demand interactions across channels to investigate the assortment and inventory problem for an 
omnichannel retailer. Building on this work, Schäfer et al. (2023) further analyze the demand effects across 
channels to optimize assortment decisions. However, in this stream, previous research mostly focuses on 
assortment and inventory decisions for different channels (e.g., online and in-store) under a single-period 
decision scenario. 
Our work is also related to the literature on omnichannel inventory replenishment. For instance, Xu et al. 
(2017) develope a dynamic programming algorithm to address the problem of a single product with a given 
demand. Xu & Cao (2019) propose a finite horizon, periodic review inventory model that takes into account 
stochastic demand. They also suggest an optimal myopic policy for a single product. In contrast, Li (2020) 
examines the multi-period inventory model for the replenishment of the CDC and multiple nearby stores 
under the ship-from-store-to-store strategy. The study is conducted for a single product with exogenous 
demand, and aimed to address the problem of replenishing inventory at multiple locations. Goedhart et al. 
(2022) develope a Hierarchical Markov Process-based model to address the replenishment problem for a 
brick-and-mortar store that serves both online and in-store demand. Nevertheless, these models are 
restricted to the scenario where only one product is considered. 
Distinguished from prior studies, this paper focus on addressing the MFC assortment and inventory 
decision problem in the context of grocery business digital transformation. Multiple items, uncertain 
demand, and multiple decision periods are considered. This paper proposes novel heuristic policies for 
optimizing MFC inventory decision problem, which effectively address the curse of dimensionality. By 
recognizing and defining different decision factors under the new digital grocery scenario, this paper offers 
several insights on inventory optimization that distinguishes it from prior research. 

Problem Formulation 
In this section, we begin by presenting the process of fulfilling online orders for a brick-and-mortar store 
that utilizes an MFC. Then, we proceed to formulate the assortment and inventory problem under the 
Markov decision process framework (Puterman, 2014). 
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The Online Order Fulfillment Process with an MFC 

An MFC is a small warehouse that hold a small assortment of frequently purchased products for rapid 
shipping. MFCs can utilize robotic mobile fulfillment systems to speed up the picking process (Hein et al., 
2022). Hence, picking items from the MFC is much faster than picking items from the sales floor. In 
practice, retailers transfer products into an MFC periodically (e.g., every week) from their in-store 
stockrooms to fulfill online orders effectively.  
Figure 1 depicts the online order fulfillment process for a brick-and-mortar store with an MFC. After an 
online order arrives, a picker or automation bot will try to pick items from the MFC. If an item in the order 
is not available in the MFC, the picker will pick it from the sales floor with incurring a higher picking cost 
and a longer picking time. All picked products will be sent to the packing workstation, which is mostly 
located in the MFC, to be packaged for a delivery or customer pick-up. 
 

 

Figure 1. The Online Order Fulfillment Process 

The MFC Inventory Decision Framework 

We formulate the MFC inventory decision problem based on the MDP framework. In the setting, managers 
make the assortment and inventory decisions periodically (e.g., every week) with real-time inventory levels, 
demand distributions, recognized costs, and profits. As shown in Figure 2, at each decision point, Managers 
can use the information about forecasted online demand, current inventory level, the free space of MFC, 
and the volume, extra profit, transfer cost of SKUs to determine which SKUs to transfer into or out from 
the MFC, as well as how many units to transfer. Table 1 summarizes the notations used in this paper. 

Under the time horizon T, the system state at decision period 𝑡 ∈ [0, 𝑇]  is denoted as 𝒚𝒕 =
(𝑦",$ , 𝑦%,$ , ⋯ , 𝑦&,$ , ⋯ , 𝑦',$), where 𝑦&,$ ≥ 0 is the current inventory level of SKU 𝑖 ∈ {1,2,⋯ , 𝐼} at period t. The 
system state space is Y. At the beginning of each decision period, the manager needs to make the assortment 
and inventory decisions for the MFC, that is, determine which set of SKUs and their quantities to transfer 
in or out the MFC to maximize the profit. We denote the transfer action as 𝒙𝒕 = 6𝑥",$ , 𝑥%,$ , ⋯ , 𝑥&,$ , ⋯ , 𝑥',$8, 
where 𝑥&,$ ∈ [−𝑦&,$ , +∞) is the transfer quantity of SKU i at period t. 𝑥&,$ < 0 means transferring out from the 
MFC, which happens when there is a need to make space for other products at current period. 𝑥&,$ > 0 
means transferring into the MFC. The transfer action space is X. We optimize the MFC assortment and 
inventory problem by deriving the optimal transfer actions for each decision period. We also define a post-
action state, which is denoted as 𝒛𝒕 = (𝑧",$ , 𝑧%,$ , ⋯ , 𝑧&,$ , ⋯ , 𝑧',$), 𝑧&,$ = 𝑦&,$ + 𝑥&,$ is the post-action inventory 
level. The post-action inventory level can be utilized to aggregate system states and transfer actions, as 
different current inventory levels and transfer actions can result in the same post-action inventory level. 
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Figure 2.  Dynamic Decision Process 

 

Notations  Description 
T Time horizon. 
t Decision period, 𝑡 ∈ [0, 𝑇]. 
𝒚𝒕  System state at decision period t, 𝒚𝒕 = (𝑦",$ , 𝑦%,$ , ⋯ , 𝑦&,$ , ⋯ , 𝑦',$). 
𝑦&,$  Current inventory level of SKU i, 𝑖 ∈ {1,2,⋯ , 𝐼}, at period t. 

𝒙𝒕  Transfer action at period t, 𝒙𝒕 = 6𝑥",$ , 𝑥%,$ , ⋯ , 𝑥&,$ , ⋯ , 𝑥',$8. 
𝑥&,$  Transfer quantity of SKU i at period t, 𝑥&,$ ∈ [−𝑦&,$ , +∞). 

𝒛𝒕  Post-action state at period t, 𝒛𝒕 = (𝑧",$ , 𝑧%,$ , ⋯ , 𝑧&,$ , ⋯ , 𝑧',$). 
𝑧&,$  Post-action inventory level of SKU i at period t, 𝑧&,$ = 𝑦&,$ + 𝑥&,$. 
𝒅𝒕  Customer demand at period t, 𝒅𝒕 = (𝑑",$ , 𝑑%,$ , ⋯ , 𝑑&,$ , ⋯ , 𝑑',$). 
𝑑&,$  Customer demand of SKU i at period t, 𝑑&,$ ∈ ℕ(. 

𝚯𝒕  Customer demand distribution at period t, 𝚯𝒕 = (𝜽𝟏,𝒕, 𝜽𝟐,𝒕, ⋯ , 𝜽𝒊,𝒕, ⋯ , 𝜽𝑰,𝒕). 
𝜽𝒊,𝒕  Customer demand distribution parameter of SKU i at period t. 
𝑆  Total space of an MFC. 
𝑠&  Unit volume of SKU i. 
𝑐$$-  Transfer cost at period t. 
𝑎&  Unit transfer cost of SKU i. 
𝑞&  Unit extra profit of SKU i. 
𝑔$  Extra profit at period t. 
𝑟$  Single-period profit at period t. 
𝑅$  Total system discounted profit at period t. 
𝛾  Discount rate. 

Table 1. Notations 

 
The system state transition depends on current inventory level, transfer action, and customer demand 
during the period. Let 𝒅𝒕 = (𝑑",$ , 𝑑%,$ , ⋯ , 𝑑&,$ , ⋯ , 𝑑',$) denote the customer demand at period t, where 𝑑&,$ ∈
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ℕ is the customer demand of SKU i at period t. 𝑑",$ , 𝑑%,$ , ⋯ , 𝑑&,$ , ⋯ , 𝑑',$ are independent but not necessarily 
identically distributed random variables. Their distributions are denoted as 𝚯𝒕 = (𝜽𝟏,𝒕, 𝜽𝟐,𝒕, ⋯ , 𝜽𝒊,𝒕, ⋯ , 𝜽𝑰,𝒕), 
where 𝜽𝒊,𝒕 is a vector of demand distribution parameters of SKU i. Because retailers mostly put popular 
products in the MFC, demand information is crucial for the MFC decision problem. Our model is designed 
to be adaptable and flexible in utilizing different types of forecasted demand information, such as 
deterministic demand, demand distribution, and mixture demand distribution, which can be forecasted by 
machine learning algorithms (Carbonneau et al., 2008; Huber & Stuckenschmidt, 2020). 
Then, the inventory level transition of SKU i from current period t to the next period t+1 can be written as 

𝑦&,$." = maxQ𝑦&,$ + 𝑥&,$ − 𝑑&,$ , 0R , (1) 

and the system state transition probability is  

𝑝(𝒚𝒕.𝟏|𝒚𝒕, 𝒙𝒕) = 𝑝(𝒅𝒕 = 𝒚𝒕 + 𝒙𝒕 − 𝒚𝒕.𝟏|𝚯𝒕), (2) 

where 𝑝(𝒅𝒕 = 𝒚𝒕 + 𝒙𝒕 − 𝒚𝒕.𝟏|𝚯𝒕) = ∏ 𝑝(𝑑&,$ = 𝑦&,$ + 𝑥&,$ − 𝑦&,$."|𝜽𝒊,𝒕)'
&/" . 

Considering the limited storage capacity of the MFC, we also take into account the size of the products in 
the decision-making process. Suppose the space of an MFC is 𝑆 , the unit volume of products is 𝒔 =
(𝑠", 𝑠%, ⋯ , 𝑠& , ⋯ , 𝑠'), where 𝑠& is the unit volume of SKU i. Then, we have the constraint that 𝒔0 ∙ (𝒚𝒕 + 𝒙𝒕) ≤ 𝑆, 
which can help us obtain a finite system state space and a finite action space. 
In the framework, differing from inventory problems in prior studies, costs and profits in the MFC problem 
should be defined by comparing two different online order fulfillment processes. Comparing with fulfilling 
an online order by picking items from a store shelf, we recognize the following cost and profit for the MFC: 
(1) Transfer cost. At the beginning of each period, selected products are either transferred into the MFC or 
transferred out from the MFC, which can incur the transfer cost. We denote the unit transfer cost as 𝒂 =
(𝑎", 𝑎%, ⋯ , 𝑎& , ⋯ , 𝑎'), where 𝑎& is the unit transfer cost of SKU i. Then, we assume the transfer cost of period 
t takes the following form: 

𝑐$$-(𝒙𝒕) =Z 𝑎&[𝑥&,$[
'

&/"
. (3) 

(2) Extra profit. As we introduced, picking items from the MFC can lead to lower picking costs, shorter 
picking time, and faster order fulfillment than picking them from the sales floor. It can also improve 
inventory visibility, reducing the likelihood of selling out of stock. Given these benefits, we introduce a unit 
extra profit 𝒒 = (𝑞", 𝑞%, ⋯ , 𝑞& , ⋯ , 𝑞'), where 𝑞& is the unit extra profit incurred by picking a unit of SKU i from 
the MFC instead of the sales floor. The expected extra profit at decision period t can be written as 

𝔼[𝑔$(𝒚𝒕, 𝒙𝒕)] =Z` Z 𝑝6𝑑&,$[𝜽𝒊,𝒕8𝑑&,$𝑞&

1!,#.2!,#

3!,#/(

+ Z 𝑝6𝑑&,$[𝜽𝒊,𝒕8
4

3!,#/2!,#.1!,#."

6𝑥&,$ + 𝑦&,$8𝑞&a
'

&/"

, (4) 

where the first part inside the square brackets represents the extra profit generated when the demand is 
lower than or equal to the inventory level, while the second part represents the extra profit generated when 
the demand exceeds the inventory level.  
Note that our model does not include the cost and profit of a product itself, as picking it from different 
channels (i.e., MFC and sales floor) does not change its cost and profit. We focus on the relative cost and 
benefit of using the MFC compared to picking items from sales floor. 
Then, at period t, the single-period profit function is 

𝑟$(𝒚𝒕, 𝒙𝒕) = 𝑔$(𝒚𝒕, 𝒙𝒕) − 𝑐$$-(𝒙𝒕). (5) 
The total discounted profit takes the form: 

𝑅$(𝒚𝒕, 𝒙𝒕) =Z 𝛾56$𝑟5(𝒚𝒌, 𝒙𝒌)
8

5/$
, (6) 

where 𝛾 is the discount factor, 0 ≤ 𝛾 ≤ 1. Our objective is to obtain an optimal policy 𝜋∗: 
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𝜋∗ = argmax
:

𝑅$:(𝒚𝒕) , (7) 

where a policy, 𝜋(𝒚) = 𝒙 for all 𝒚 ∈ 𝒀 and 𝒙 ∈ 𝑿, is a function that maps each inventory state to a transfer 
action. 
The Bellman equation is given by 

𝑅$∗(𝒚𝒕) = max
𝒙𝒕

`𝑟$(𝒚𝒕) + 𝛾 Z 𝑝(𝒚𝒕.𝟏|𝒚𝒕, 𝒙𝒕)𝑅$."∗ (𝒚𝒕.𝟏)
𝒚𝒕%𝟏∈𝒀

a . (8) 

In practice, there are thousands of different products that should be placed into the MFC. Due to the curse 
of dimensionality, it is extremely difficult, if not impossible, to solve the MFC inventory problem using 
dynamic programming methods. In next section, we propose different inventory policies for different 
scenarios to address this problem.  

Micro-Fulfillment Center Inventory Policies 
This section shows our critical analytical findings of the inventory policy structure and value function 
properties. Based on these findings, we propose several policies and algorithms under different decision 
scenarios. 

The Deterministic Demand Case 

We first consider an MFC inventory problem with deterministic demand to explore the structure of the 
optimal policy. Given the deterministic demand, it is unnecessary for the inventory level to exceed the 
customer demand at each period, and by the end of each period, all products in the MFC should be sold out. 
In this scenario, the MFC inventory problem can be simplified as: 

max ∑ (𝑞& − 𝑎&)𝑥&'
&/"    

subject to ∑ 𝑠&𝑥&'
&/" ≤ 𝑆  (9) 

 0 ≤ 𝑥& ≤ 𝑑&, 𝑖 ∈ {1,2,⋯ , 𝐼}.   
This problem can be approximately regarded as a fractional knapsack problem, which can be solved by the 
greedy solution (Magazine et al., 1975). Inspired by this, we propose a greedy MFC inventory policy for the 
deterministic demand case.  
Deterministic Demand Policy (DD). There is a greedy policy for the MFC inventory problem with 
deterministic demand, that is, at each period, iteratively selecting the SKU with the greatest profit-to-
volume ratio, (𝑞& − 𝑎&)/𝑠&. 
Algorithm 1. (The algorithm for solving DD) 

Step 1. Sort the SKUs with the profit-to-volume ratio (𝑞& − 𝑎&)/𝑠&. 
Step 2. Check if the MFC has available space. If the available space is 0, terminate. Otherwise, go to Step 3. 

Step 3. Transfer the SKU with the highest profit-to-volume ratio into the MFC until 𝑥& = 𝑑& or the available 
space of the MFC becomes 0. Return to Step 2. 

The Single-Period MFC Inventory Problem 

In the following, we consider the MFC scenarios with random demand. For a single product, the expected 
extra profit function can be written as: 

𝔼[𝑔$(𝑦$ , 𝑥$)] = Z 𝑝(𝑑$|𝜽𝒕)𝑑$𝑞
1#.2#

3#/(

+ Z 𝑝(𝑑$|𝜽𝒕)
4

3#/2#.1#."

(𝑥$ + 𝑦$)𝑞, (10) 

and the single-period profit function is given by 
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𝑟$(𝑦$) = 𝑔$(𝑦$ , 𝑥$) − 𝑐$$-(𝑥$) (11) 

where 𝑐$$-(𝑥$) = 𝑎|𝑥$|. 
In this scenario, we obtain the following findings: 

Lemma 1. For a single product, the expected extra profit at the current period 𝔼(𝑔$) is increasing in the 
post-action inventory level 𝑧$, 𝑧$ = 𝑦$ + 𝑥$. That is, given the current inventory level 𝑦$, 𝑔$ is increasing in 
the transfer action 𝑥$. And, given a fixed transfer action 𝑥$, 𝑔$ is also increasing in system state 𝑦$. As 𝑧$ 
increases, 𝔼(𝑔$) gradually approaches 𝔼(𝑑$)𝑞.  

Proof: The expected extra profit at the current period 𝔼(𝑔$) is  

𝔼[𝑔$(𝑧$)] = Z 𝑝(𝑑$|𝜽𝒕)𝑑$𝑞
?#

3#/(

+ Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑧$𝑞, (12) 

and  

𝔼(𝑑$)𝑞 = Z 𝑝(𝑑$|𝜽𝒕)𝑑$𝑞
.4

3#/(

. (13) 

Then, we can get: 

𝔼(𝑑$)𝑞 − 𝔼(𝑔$) = Z 𝑝(𝑑$|𝜽𝒕)𝑑$𝑞
.4

3#/(

− Z 𝑝(𝑑$|𝜽𝒕)𝑑$𝑞
?#

3#/(

− Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑧$𝑞

= Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑑$𝑞 − Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑧$𝑞

= Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

(𝑑$ − 𝑧$)𝑞. (14)

 

The Eq. (14) indicates that, as 𝑧$  increases, 𝔼(𝑑$)𝑞 − 𝔼(𝑔$)  will decrease and approach 0. Hence, we 
conclude that, for a single product, the expected extra profit at the current period 𝔼(𝑔$) is increasing in the 
post-action inventory level 𝑧$, 𝑧$ = 𝑦$ + 𝑥$. That is, given the current inventory level 𝑦$, 𝑔$ is increasing in 
the transfer action 𝑥$. And, given a fixed transfer action 𝑥$, 𝑔$ is also increasing in system state 𝑦$. As 𝑧$ 
increases, 𝔼(𝑔$) gradually approaches 𝔼(𝑑$)𝑞. £ 

Lemma 2. Given current inventory level 𝑦$, when 𝑥$ < 0, that is, we transfer out the product from the 
MFC, the single-period profit 𝑟$ is increasing in 𝑥$. When  𝑥$ ≥ 0, that is, we transfer the product into the 
MFC, if the cumulative possibility 𝐹(𝑑$ = 𝑦$ + 𝑥$) ≤ 1 − 𝑎 𝑞⁄ , 𝑟$  is increasing in 𝑥$ , otherwise, 𝑟$  is 
decreasing in 𝑥$. Meanwhile, given a fixed transfer action 𝑥$, 𝑟$ is increasing in 𝑦$. 

Proof: Given current inventory level 𝑦$, when 𝑥$ < 0, based on Eq. (11), we can obtain 

𝑟$(𝑦$) = 𝑔$(𝑦$ , 𝑥$) + 𝑎𝑥$ . (15) 

According to Lemma 1, given 𝑦$, 𝑔$(𝑦$ , 𝑥$) is increasing in 𝑥$, so the single-period profit 𝑟$ is increasing in 
𝑥$. 

When 𝑥$ ≥ 0, we have  

𝑟$(𝑦$) = 𝑔$(𝑦$ , 𝑥$) − 𝑎𝑥$ . (16) 

Let 𝑔$(𝑦$ , 𝑥$ + 1) − 𝑔$(𝑦$ , 𝑥$): 
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𝑔$(𝑦$ , 𝑥$ + 1) − 𝑔$(𝑦$ , 𝑥$) = 𝑝(𝑑$ = 𝑧$ + 1|𝜽𝒕)(𝑧$ + 1)𝑞 + Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#.%

(𝑧$ + 1)𝑞

− Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑧$𝑞

= Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

(𝑧$ + 1)𝑞 − Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑧$𝑞

= Z 𝑝(𝑑$|𝜽𝒕)
.4

3#/?#."

𝑞

= [1 − 𝐹(𝑑$ = 𝑧$)]𝑞, (17)

 

where 𝐹(𝑑$) is the cumulative possibility function, and 𝑧$ = 𝑦$ + 𝑥$. 
Then, the marginal profit is 

[1 − 𝐹(𝑑$ = 𝑧$)]𝑞 − 𝑎. (18) 

when the marginal profit is 0, 𝑧$ is optimal and 𝐹(𝑑$ = 𝑧$) = 1 − 𝑎 𝑞⁄ . 

Therefore, when  𝑥$ ≥ 0 , if the cumulative possibility 𝐹(𝑑$ = 𝑦$ + 𝑥$) ≤ 1 − 𝑎 𝑞⁄ , 𝑟$  is increasing in 𝑥$ , 
otherwise, 𝑟$ is decreasing in 𝑥$. Meanwhile, given a fixed transfer action 𝑥$, 𝑟$ is increasing in 𝑦$. £ 
Lemma 1 and Lemma 2 indicate that, for a single product, we should put it into the MFC as many as possible 
to gain extra profit. But, when we take into account the transfer cost to maximize the total profit of a decision 
period, there is an optimal threshold of the inventory level. Based on this finding, we provide the following 
MFC inventory policy:  
Single-Period Single-Product Random Demand Policy (SSR). There is a heuristic for the single-
period single-product MFC inventory problem with random demand. That is, given the demand 
distribution of period t, there is an inventory level 𝑧$∗  that satisfies 𝐹(𝑑$ = 𝑧$∗	) = 1 − 𝑎 𝑞⁄ . When the 
current inventory level is equal to or greater than 𝑧$∗, the transfer action 𝑥$∗ = 0, otherwise, 𝑥$∗ = 𝑧$∗ − 𝑦$. 
The SSR policy is not able to address the MFC inventory problem well in practice, because there are 
thousands of products. However, it can help us develop policies for the multi-product case, where different 
products share the limited space of the MFC. 
For the multi-product scenario, we propose a two-step decision process:  

Step 1. Transfer-in Step. Given the current inventory level and the remaining available space, we make 
the assortment decision on which SKU to transfer into the MFC until the available space in the 
MFC is fully utilized. 

Step 2. Replacement Step. When the MFC space is fully utilized, we decide whether to transfer out items 
and which items to transfer out from the MFC to free up space for other products. 

Inspired by policies DD and SSR, we derive a heuristic for the single-period multi-product case based on 
the two-step decision process. 
Single-Period Multi-Product Random Demand Policy (SMR). There is a heuristic for the single-
period multi-product random demand scenario: 

(1) Transfer-in step. The SKU i with the highest marginal profit-to-volume ratio, 
{[1 − 𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎&} 𝑠&⁄ , should be prioritized for placement in the MFC until its inventory level 
reaches the threshold 𝑧&∗ that satisfies 𝐹(𝑑& = 𝑧&∗	) = 1 − 𝑎& 𝑞&⁄  or the MFC space is fully utilized. 

(2) Replacement step. The SKU i should be transferred into the MFC and The SKU j should be 
transferred out from the MFC only when a) The SKU i has the highest marginal profit-to-volume 
ratio and its inventory level is lower than the threshold 𝑧&∗. b) The SKU j has the lowest transfer-
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out loss ∑ q1 − 𝐹6𝑑@8r𝑞@
?'6"

3'/?'6A&B	(
(!
('
,?')

+ 𝑎@𝑠& 𝑠@⁄ . c)	 ∑ q1 − 𝐹6𝑑@8r𝑞@
?'6"

3'/?'6A&B	(
(!
('
,?')

+ 𝑎@𝑠& 𝑠@⁄ < [1 −

𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎& . 
The algorithm to implement the heuristic is provided as follows: 

Algorithm 2. (The algorithm for solving SMR) 
Step 1. Check if the MFC has available space. If the available space is 0, go to Step 4. Otherwise, go to Step 

2. 

Step 2. Sort the SKUs with the marginal profit-to-volume ratio {[1 − 𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎&} 𝑠&⁄ . Go to step 3. 

Step 3. Transfer the SKU with the highest marginal profit-to-volume ratio into the MFC until 𝑧& = 𝑧&∗ that 
satisfies 𝐹(𝑑& = 𝑧&∗	) = 1 − 𝑎& 𝑞&⁄  or the MFC space is fully utilized. Return to Step 1. 

Step 4. Sort the SKUs with the transfer-out loss ∑ q1 − 𝐹6𝑑@8r𝑞@
?'6"

3'/?'6A&B	(
(!
('
,?')

+ 𝑎@𝑠& 𝑠@⁄ . Go to Step 5. 

Step 5. Find the SKUs that satisfy 𝑧& < 𝑧&∗, and then sort them with the marginal profit-to-volume ratio 
{[1 − 𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎&} 𝑠&⁄ . Go to Step 6. 

Step 6. Compare the lowest transfer-out loss (SKU j) with the marginal profit [1 − 𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎& of the 
product (SKU i) having the highest marginal profit-to-volume ratio. If the lowest transfer-out loss 
is lower than the marginal profit, transfer out round (𝑠& 𝑠@⁄ ) units j, and transfer one unit i in to the 
MFC. Return to Step 4. Otherwise, terminate. 

The Multi-Period MFC Inventory Problem 

According to the proposed MFC inventory decision framework, maximizing total discount profit requires 
considering the impact of current-period decision on future-period system state and profit. In this section, 
we derive the MFC inventory policy under the multi-period decision scenarios. 
First, we consider a case where there is one product with stationary demand distribution, that is, the 
demand distribution of the product is the same across different periods. In this case, the Bellman equation 
takes the following form: 

𝑅$∗(𝑦$) = max
2#

`𝑟$(𝑦$) + 𝛾 Z 𝑝(𝑦$."|𝑦$ , 𝑥$)𝑅$."∗ (𝑦$.")
1#%)∈𝒀

a . (19) 

We can obtain the following findings: 

Lemma 3. At the decision period t, the total discounted profit 𝑅$∗(𝑦$) is increasing in the system state 
(current inventory level) 𝑦$. 
Proof: When there is only one SKU, at each decision period, we do not need to consider transferring out 
products to free up inventory space. In addition, based on Lemma 2, Eq. (1), and Eq. (2), given the customer 
demand information, if there is a lager current inventory level, we can achieve the same extra profit 𝑔$ with 
a smaller transfer cost. Therefore, at the decision period t, the total discounted profit 𝑅$∗(𝑦$) is increasing in 
the system state (current inventory level) 𝑦$. £ 

Lemma 4. Given the system state 𝑦$ , there is an optimal transfer action 𝑥$∗  that satisfies 𝐹(𝑑$ = 𝑦$ +
𝑥$∗	) = 1 − (𝛼 − 𝛾𝑎) 𝑞⁄ . 
Proof: As we noted in the proof of Lemma 3, if there is only one SKU, at each decision period, we do not 
need to consider transferring out products to free up inventory space, that is, 𝑥$ ≥ 0. Given the system state 
𝑦$, let 𝑅$(𝑧$ + 1) − 𝑅$(𝑧$): 

𝑅$(𝑧$ + 1) − 𝑅$(𝑧$) = [1 − 𝐹(𝑑$ = 𝑧$)]𝑞 − 𝑎 + 𝛾𝔼[𝑅$."∗ (𝑦$.")|𝑧$ + 1] − 𝛾𝔼[𝑅$."∗ (𝑦$.")|𝑧$]
= [1 − 𝐹(𝑑$ = 𝑧$)]𝑞 − 𝑎 + 𝛾𝑎. (20) 
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Hence, 𝑅$(𝑧$ + 1) − 𝑅$(𝑧$) is decreasing in 𝑧$. As 𝑧$ = 𝑦$ + 𝑥$, Given 𝑦$, when 𝑅$(𝑧$ + 1) − 𝑅$(𝑧$) = 0, that 
is, 𝐹(𝑑$ = 𝑧$) = 1 − (𝑎 − 𝛾𝑎) 𝑞⁄ , 𝑥$ is optimal. In other words, given the system state yF, there is an optimal 
transfer action 𝑥$∗ that satisfies 𝐹(𝑑$ = 𝑦$ + 𝑥$∗	) = 1 − (𝑎 − 𝛾𝑎) 𝑞⁄ . £ 
Lemma 4 indicates a stationary policy for the multi-period single-product stationary demand distribution 
case (MSS). 
Based on these findings, we next analyze the case where there are multiple products with stationary demand 
distributions. Unlike the single-period multi-product random demand case in the last section, we find that 
there is no need to take into account the replacement step in the decision process under the stationary 
demand distribution case. 

Lemma 5. Under the multi-period multi-product stationary demand distribution scenario, items in the 
MFC need not to be transferred out at any decision period. 
Proof: Based on Lemma 4, under the multi-period case, each product has an optimal inventory level 
threshold. When multiple products share the inventory space, the inventory level of each product will 
always be lower than this optimal threshold. This is because when the inventory level of a product 
approaches this threshold, the marginal profit approaches 0, and before reaching 0, it will be replaced by 
other products with higher marginal profits. When the demand distribution is stationary, product i has the 
same optimal post-action state 𝑧&∗ across decision periods, and its inventory level will never exceed 𝑧&∗ at the 
beginning of each decision period. Therefore, items in the MFC need not to be transferred out at each 
decision period. £ 
We can also obtain a stationary policy in this case. 

Multi-Period Multi-Product Stationary Demand Distribution Policy (MMS). There is a heuristic 
for the multi-period multi-product stationary demand distribution case, that is, at each decision period t, 
the product i with the highest multi-period marginal profit-to-volume ratio, 
{q1 − 𝐹6𝑑& = 𝑧&,$8r𝑞& − 𝑎& + 𝛾𝑎&} 𝑠&⁄ , should be transferred into the MFC first until the inventory level of 
product i reaches the optimal threshold 𝑥&,$∗  that satisfies 𝐹6𝑑& = 𝑦&,$ + 𝑥&,$∗ 	8 = 1 − (𝑎& − 𝛾𝑎&) 𝑞&⁄  or the MFC 
space is fully utilized. 
Then, we consider the case where there are multiple products with varying demand distributions.  

In this case, as the demand distribution of the same product differ across periods, the MFC inventory 
problem becomes more challenging. First, it is hard to forecast the demand information for many future 
periods and the forecasted demand information of the period after a long time is unreliable. Second, even 
we know the varying demand distributions for all future periods, the curse of dimensionality can make the 
MDP problem extremely challenging.  
To make the problem solvable, we consider the following assumption. 

Future Demand Assumption: At decision period t, given 𝑥&,$∗  in policy MMS, the post-action inventory 
level 𝑧&,$∗ = 𝑦&,$ + 𝑥&,$∗ , we assume that 𝑧&,$∗ − 𝔼(𝑑&,$) ≤ 𝑧&,$."∗  for all SKUs. 

The future demand assumption guarantees that the future demand fluctuations of SKUs remain within 
reasonable bounds. Actually, based on policy MMS, for product i at each decision period t, the post-action 
inventory level 𝑧&,$ will approach but never reach the threshold 𝑧&,$∗ , that is, 𝑧&,$ < 𝑧&,$∗ . This is because when 
the post-action inventory level of a product i approaches the threshold, the marginal profit of that product 
gradually approaches zero. When the marginal profit of product i becomes lower than that of other 
products, we will choose to transfer other products into the MFC. Given 𝑧&,$ < 𝑧&,$∗ , then we can obtain 
𝔼(𝑦&,$.") = 𝑧&,$ − 𝔼(𝑑&,$) < 𝑧&,$∗ − 𝔼(𝑑&,$) ≤ 𝑧&,$."∗ , which indicates that, in practice, the current inventory level 
𝑦&,$."  at decision period t+1 is unlikely to reach the threshold 𝑧&,$."∗ . Therefore, the future demand 
assumption is very reasonable. 
Lemma 6. If the Future Demand Assumption holds, the heuristic for the multi-period multi-product 
varying demand distribution case (MMV) will be the same as the MMS policy. 

Proof: Under the multi-period multi-product varying demand distribution case, for product i, given the 
system state 𝑦&,$, let 𝑅&,$6𝑧&,$ + 18 − 𝑅&,$6𝑧&,$8, where 𝑧&,$ + 1 ≤ 𝑧&,$∗ , we can get: 
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𝑅&,$6𝑧&,$ + 18 − 𝑅&,$6𝑧&,$8 = q1 − 𝐹6𝑑&,$ = 𝑧&,$8r𝑞& − 𝑎& + 𝛾𝔼q𝑅&,$."∗ 6𝑦&,$."8|𝑧&,$ + 1r 

−𝛾𝔼q𝑅&,$."∗ 6𝑦&,$."8|𝑧&,$r, (21) 

where 

𝔼q𝑅&,$."∗ 6𝑦&,$."8|𝑧&,$ + 1r = 𝑅&,$."∗ q𝔼(𝑦&,$.") = 𝑧&,$ + 1 − 𝔼6𝑑&,$8r, (22) 

𝔼q𝑅&,$."∗ 6𝑦&,$."8|𝑧&,$r = 𝑅&,$."∗ q𝔼(𝑦&,$.") = 𝑧&,$ − 𝔼6𝑑&,$8r. (23) 

If the Future Demand Assumption holds, that is, 𝑧&,$∗ − 𝔼(𝑑&,$) ≤ 𝑧&,$."∗ , then, 𝔼(𝑦&,$.") ≤ 𝑧&,$."∗ , which means 
we will never need to transfer products out of the MFC, that is 𝑥&,$ ≥ 0 for each decision period t. Then,  

𝑅&,$6𝑧&,$ + 18 − 𝑅&,$6𝑧&,$8 = q1 − 𝐹6𝑑&,$ = 𝑧&,$8r𝑞& − 𝑎& + 𝛾𝑎& , (24) 

which indicates the multi-period marginal profit of product i in policy MMS still holds.  

Therefore, if the Future Demand Assumption holds, the heuristic in policy MMS is still effective under the 
multi-period multi-product varying demand distribution case. £ 
Lemma 6 indicates that under the Future Demand Assumption, whether the demand follows a stationary 
distribution or variable distributions across decision periods, we should use the MMS policy, which we 
redefine as multi-period multi-product policy (MM). The algorithm to implement the heuristic is provided 
as follows: 
Algorithm 3. (The algorithm for solving MM) 
Step 1. Check if the MFC has available space. If the available space is 0, terminate. Otherwise, go to Step 2. 

Step 2. Sort SKUs with the multi-period marginal profit-to-volume ratio {q1 − 𝐹6𝑑& = 𝑧&,$8r𝑞& − 𝑎& + 𝛾𝑎&} 𝑠&⁄ . 
Go to Step 3. 

Step 3. Transfer the SKU with the highest multi-period marginal profit-to-volume ratio into the MFC if its 
inventory level is lower than the threshold 𝑥&,$∗  that satisfies 𝐹6𝑑& = 𝑦&,$ + 𝑥&,$∗ 	8 = 1 − (𝑎& − 𝛾𝑎&) 𝑞&⁄ . 
Return to Step 1. 

To summarize, we derive several heuristic policies and provide algorithms for the MFC inventory problem 
in different scenarios. The policies are designed to avoid the curse of dimensionality that arises in the MDP 
framework, making them more feasible in practice. Specifically, the policies include: 

• Deterministic Demand Policy (DD). 
• Single-Period Single-Product Random Demand Policy (SSR). 
• Single-Period Multi-Product Random Demand Policy (SMR). 
• Multi-period Single-product Stationary Demand Distribution Policy (MSS). 
• Multi-Period Multi-Product Stationary and Varying Demand Distribution Policy (MM). 

These policies provide a framework for making MFC inventory decisions and optimizing online order 
fulfillment process, with the goal of maximizing profits. 

Experimental Results 
In this section, we compare and evaluate the proposed policies by numerical simulations. In the simulation, 
we suppose the manager make the MFC inventory decision every week. We vary the time horizon T from 1 
to 10 weeks, and consider there are three types of products. In the experiment, we assume that the customer 
demand of SKU i (𝑑&) is a random variable following a Poisson distribution with the arrival rate 𝜆& (Forsberg, 
1997). We set their demand distribution with arrival rates 15, 20, 30, unit volumes as 2, 6, 4, unit extra 
profit as 6, 4, 2, and unit transfer cost as 0.6, 1, 0.4. We suppose the initial inventory of the products at the 
first period is 0. The total space of the MFC is 200. The discount factor is 0.99. 
We compare the proposed policies with the benchmark: demand sorting policy (DS). Under this policy, the 
manager places the products into the MFC in accordance with the sorting of product demand. It is a 
common practice in industry to transfer products into the MFC based on their expected sales performance. 
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As the single-product policies serve only as the foundation for our multi-product policies, we focuse on 
comparing the performance of the multi-product policies (i.e., DD, SMR, and MM), which are more 
practical than single-product policies.  
The experimental results depicted in Figure 3 clearly demonstrate the superiority of our proposed policies 
(i.e., DD, SMR, MM). As shown, the total discounted profit generated by our policies are consistently higher 
than the benchmark (DS) across different time horizons, indicating its robustness and effectiveness. Table 
2 summarizes the performance improvement of our proposed policies compared to the benchmark. DD, 
SMR, and MM can improve the total discounted profit by 76.6%, 81.4%, 82.5%, respectively.  

SMR and MM exhibit comparable performance as they utilize similar decision-making criteria and 
principles. SMR is based on the marginal profit-to-volume ratio {[1 − 𝐹(𝑑& = 𝑧&)]𝑞& − 𝑎&} 𝑠&⁄ , while MM is 
based on the multi-period marginal profit-to-volume ratio, {q1 − 𝐹6𝑑& = 𝑧&,$8r𝑞& − 𝑎& + 𝛾𝑎&} 𝑠&⁄ . This shows 
that each unit of product i contributes to the future profit only by an amount of 𝛾𝑎&. Therefore, when the 
customer demand distribution is stationary or fluctuates within a certain range across different periods, 
considering the impact of current transfer actions on future returns does not have a significant impact on 
the total discounted profit. 
 

 

Figure 3.  Policy Comparison 

 

Policies Profit Improvement 
DS - 
DD 76.6% 
SMR 81.4% 
MM 82.5% 

Table 2. Profit Improvement 

Conclusion 
As a new phenomenon of grocery business digital transition, the MFC requires further exploration of its 
management issues. This study aims to address the MFC assortment and inventory decision problem for 
the digital grocery ecosystem. With the goal of maximizing the profit, we first propose an MFC inventory 
decision framework based on the Markov decision process. Under this decision framework, we analyze 
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several inventory decision scenarios, such as single-period cases, multi-period cases, deterministic demand 
case, stationary demand distribution case, and varying demand distribution case. We solve the MFC 
inventory problem under these scenarios and propose effective heuristics, such as DD, SMR, and MM. 
Simulation results show that the proposed heuristic policies outperform the benchmark significantly. 
This paper contributes to the research and practice in the field of grocery business digital transformation 
and digital ecosystems. First, we provide an MFC inventory decision framework for the digital grocery 
ecosystem. Specifically, we formulate the MFC inventory decision problem as a dynamic decision problem 
under the Markov decision process (MDP) framework. In the formulation, we recognize and define the new 
cost and profit, which differ from prior inventory studies. Second, we derive and propose several MFC 
inventory heuristic policies under different scenarios. The proposed policies can effectively avoid the curse 
of dimensionality, making them more applicable to practical scenarios. We also provide algorithms to 
implement the proposed policies. Third, this paper provides several important findings that contribute 
valuable management insights to the digital transformation practice in the grocery business field. Fourth, 
the study also contributes to the research on inventory management, as we propose an inventory decision 
framework and several heuristics under a new scenario in grocery business digital transformation. This 
paper provides a foundation for future research on the MFC management problem. 
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