3,546 research outputs found
Recommended from our members
Modelling the behaviour of large gravity wharf structure under the effects of earthquake-induced liquefaction
Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico
The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone
Impact of intermittent preventive treatment with dihydroartemisinin-piperaquine on malaria in Ugandan schoolchildren: a randomized, placebo-controlled trial.
BACKGROUND: Intermittent preventive treatment (IPT) in schoolchildren offers a promising option for malaria control. However, the optimal drug and dosing regimens for IPT remain to be determined. METHODS: We conducted a randomized, double-blind, placebo-controlled trial in 740 schoolchildren aged 6-14 years living in a setting of high malaria transmission in Uganda. Enrolled children were randomized to dihydroartemisinin-piperaquine (DP) given once a month (IPTm), DP given once a school term (4 treatments over 12 months, IPTst), or placebo and followed for 12 months. The primary outcome was the incidence of malaria over 12 months. Secondary outcomes included parasite prevalence and anemia over 12 months. Analyses were conducted on an intention-to-treat basis. RESULTS: In the placebo arm, the incidence of malaria was 0.34 episodes per person-year and the prevalence of parasitemia and anemia was 38% and 20%, respectively. IPTm reduced the incidence of malaria by 96% (95% confidence interval [CI], 88%-99%, P < .0001), the prevalence of asymptomatic parasitemia by 94% (95% CI, 92%-96%, P < .0001), and the prevalence of anemia by 40% (95% CI, 19%-56%, P < .0001). IPTst had no significant effect on the incidence of symptomatic malaria or the prevalence of anemia, but reduced the prevalence of asymptomatic parasitemia by 54% (95% CI, 47%-60%, P < .0001). CONCLUSIONS: Monthly IPT with DP offered remarkable protection against clinical malaria, parasitemia, and anemia in schoolchildren living in a high-malaria-transmission setting. CLINICAL TRIALS REGISTRATION: NCT01231880
Amorphous oxygen-containing hydrogenated carbon films formed by plasma enhanced chemical vapor deposition
Films were deposited from glow discharge plasmas of acetylene-oxygen-argon mixtures in a deposition system fed with radio frequency power. The principal variable was the proportion of oxygen in the gas feed, X(ox). The chemical structure and elemental composition of the films were investigated by transmission infrared spectrophotometry and x-ray photoelectron spectroscopy. Optical properties-refractive index, absorption coefficient, and optical gap-were determined from transmission ultraviolet-visible spectroscopy data. The latter also allowed the determination of film thicknesses and hence deposition rates. It was found that the oxygen content of the films and, within limits, the refractive index are controllable by the selection of X(ox). (C) 1996 American Vacuum Society.14111812
The impact of an intervention to introduce malaria rapid diagnostic tests on fever case management in a high transmission setting in Uganda: A mixed-methods cluster-randomized trial (PRIME).
Rapid diagnostic tests for malaria (mRDTs) have been scaled-up widely across Africa. The PRIME study evaluated an intervention aiming to improve fever case management using mRDTs at public health centers in Uganda. A cluster-randomized trial was conducted from 2010-13 in Tororo, a high malaria transmission setting. Twenty public health centers were randomized in a 1:1 ratio to intervention or control. The intervention included training in health center management, fever case management with mRDTs, and patient-centered services; plus provision of mRDTs and artemether-lumefantrine (AL) when stocks ran low. Three rounds of Interviews were conducted with caregivers of children under five years of age as they exited health centers (N = 1400); reference mRDTs were done in children with fever (N = 1336). Health worker perspectives on mRDTs were elicited through semi-structured questionnaires (N = 49) and in-depth interviews (N = 10). The primary outcome was inappropriate treatment of malaria, defined as the proportion of febrile children who were not treated according to guidelines based on the reference mRDT. There was no difference in inappropriate treatment of malaria between the intervention and control arms (24.0% versus 29.7%, adjusted risk ratio 0.81 95\% CI: 0.56, 1.17 p = 0.24). Most children (76.0\%) tested positive by reference mRDT, but many were not prescribed AL (22.5\% intervention versus 25.9\% control, p = 0.53). Inappropriate treatment of children testing negative by reference mRDT with AL was also common (31.3\% invention vs 42.4\% control, p = 0.29). Health workers appreciated mRDTs but felt that integrating testing into practice was challenging given constraints on time and infrastructure. The PRIME intervention did not have the desired impact on inappropriate treatment of malaria for children under five. In this high transmission setting, use of mRDTs did not lead to the reductions in antimalarial prescribing seen elsewhere. Broader investment in health systems, including infrastructure and staffing, will be required to improve fever case management
Estimating malaria parasite prevalence from community surveys in Uganda: a comparison of microscopy, rapid diagnostic tests and polymerase chain reaction.
BACKGROUND: Household surveys are important tools for monitoring the malaria disease burden and measuring impact of malaria control interventions with parasite prevalence as the primary metric. However, estimates of parasite prevalence are dependent on a number of factors including the method used to detect parasites, age of the population sampled, and level of immunity. To better understand the influence of diagnostics, age, and endemicity on estimates of parasite prevalence and how these change over time, community-based surveys were performed for two consecutive years in three settings and the sensitivities of microscopy and immunochromatographic rapid diagnostic tests (RDTs) were assessed, considering polymerase chain reaction (PCR) as the gold standard. METHODS: Surveys were conducted over the same two-month period in 2012 and 2013 in each of three sub-counties in Uganda: Nagongera in Tororo District (January-February), Walukuba in Jinja District (March-April), and Kihihi in Kanungu District (May-June). In each sub-county, 200 households were randomly enrolled and a household questionnaire capturing information on demographics, use of malaria prevention methods, and proxy indicators of wealth was administered to the head of the household. Finger-prick blood samples were obtained for RDTs, measurement of hemoglobin, thick and thin blood smears, and to store samples on filter paper. RESULTS: A total of 1200 households were surveyed and 4433 participants were included in the analysis. Compared to PCR, the sensitivity of microscopy was low (65.3% in Nagongera, 49.6% in Walukuba and 40.9% in Kihihi) and decreased with increasing age. The specificity of microscopy was over 98% at all sites and did not vary with age or year. Relative differences in parasite prevalence across different age groups, study sites, and years were similar for microscopy and PCR. The sensitivity of RDTs was similar across the three sites (range 77.2-82.8%), was consistently higher than microscopy (p < 0.001 for all pairwise comparisons), and decreased with increasing age. The specificity of RDTs was lower than microscopy (76.3% in Nagongera, 86.3% in Walukuba, and 83.5% in Kihihi) and varied significantly by year and age. Relative differences in parasite prevalence across age groups and study years differed for RDTs compared to microscopy and PCR. CONCLUSION: Malaria prevalence estimates varied with diagnostic test, age, and transmission intensity. It is important to consider the effects of these parameters when designing and interpreting community-based surveys
Intermittent preventive treatment with dihydroartemisinin-piperaquine in Ugandan schoolchildren selects for Plasmodium falciparum transporter polymorphisms that modify drug sensitivity.
Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.)
State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime
Recently, macroscopic mechanical oscillators have been coaxed into a regime
of quantum behavior, by direct refrigeration [1] or a combination of
refrigeration and laser-like cooling [2, 3]. This exciting result has
encouraged notions that mechanical oscillators may perform useful functions in
the processing of quantum information with superconducting circuits [1, 4-7],
either by serving as a quantum memory for the ephemeral state of a microwave
field or by providing a quantum interface between otherwise incompatible
systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode
of a microwave field to and from a mechanical oscillator has not been
demonstrated owing to the inability to agilely turn on and off the interaction
between microwave electricity and mechanical motion. Here we demonstrate that
the state of an itinerant microwave field can be coherently transferred into,
stored in, and retrieved from a mechanical oscillator with amplitudes at the
single quanta level. Crucially, the time to capture and to retrieve the
microwave state is shorter than the quantum state lifetime of the mechanical
oscillator. In this quantum regime, the mechanical oscillator can both store
and transduce quantum information
Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise.
Sprint interval exercise improves several health markers but the appetite and energy balance response is unknown. This study compared the effects of sprint interval and endurance exercise on appetite, energy intake and gut hormone responses. Twelve healthy males [mean (SD): age 23 (3) years, body mass index 24.2 (2.9) kg m(-2), maximum oxygen uptake 46.3 (10.2) mL kg(-1) min(-1)] completed three 8 h trials [control (CON), endurance exercise (END), sprint interval exercise (SIE)] separated by 1 week. Trials commenced upon completion of a standardised breakfast. Sixty minutes of cycling at 68.1 (4.3) % of maximum oxygen uptake was performed from 1.75-2.75 h in END. Six 30-s Wingate tests were performed from 2.25-2.75 h in SIE. Appetite ratings, acylated ghrelin and peptide YY (PYY) concentrations were measured throughout each trial. Food intake was monitored from buffet meals at 3.5 and 7 h and an overnight food bag. Appetite (P 0.05). Therefore, relative energy intake (energy intake minus the net energy expenditure of exercise) was lower in END than that in CON (15.7 %; P = 0.006) and SIE (11.5 %; P = 0.082). An acute bout of endurance exercise resulted in lower appetite perceptions in the hours after exercise than sprint interval exercise and induced a greater 24 h energy deficit due to higher energy expenditure during exercise
Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3
Topological insulators are a recently discovered class of materials with
fascinating properties: While the inside of the solid is insulating,
fundamental symmetry considerations require the surfaces to be metallic. The
metallic surface states show an unconventional spin texture, electron dynamics
and stability. Recently, surfaces with only a single Dirac cone dispersion have
received particular attention. These are predicted to play host to a number of
novel physical phenomena such as Majorana fermions, magnetic monopoles and
unconventional superconductivity. Such effects will mostly occur when the
topological surface state lies in close proximity to a magnetic or electric
field, a (superconducting) metal, or if the material is in a confined geometry.
Here we show that a band bending near to the surface of the topological
insulator BiSe gives rise to the formation of a two-dimensional
electron gas (2DEG). The 2DEG, renowned from semiconductor surfaces and
interfaces where it forms the basis of the integer and fractional quantum Hall
effects, two-dimensional superconductivity, and a plethora of practical
applications, coexists with the topological surface state in BiSe. This
leads to the unique situation where a topological and a non-topological, easily
tunable and potentially superconducting, metallic state are confined to the
same region of space.Comment: 12 pages, 3 figure
- …