77 research outputs found

    Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells

    Get PDF
    The transcription factor Foxp3 is essential for optimal regulatory T (T reg) cell development and function. Here, we show that CD4+ T cells from Cbl-b RING finger mutant knockin or Cbl-bโ€“deficient mice show impaired TGF-ฮฒโ€“induced Foxp3 expression. These T cells display augmented Foxo3a phosphorylation, but normal TGF-ฮฒ signaling. Expression of Foxo3a rescues Foxp3 expression in Cbl-bโ€“deficient T cells, and Foxo3a deficiency results in defective TGF-ฮฒโ€“driven Foxp3 induction. A Foxo3a-binding motif is present in a proximal region of the Foxp3 promoter, and is required for Foxo3a association. Foxo1 exerts similar effects as Foxo3a on Foxp3 expression. This study reveals that Foxo factors promote transcription of the Foxp3 gene in induced T reg cells, and thus provides new mechanistic insight into Foxo-mediated T cell regulation

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    ๋ฐ•์™„์„œ์˜ ใ€Ž๋„์‹œ์˜ ํ‰๋…„ใ€์— ๋‚˜ํƒ€๋‚œ ๊ตํ™˜๊ฐ€์น˜๋กœ์„œ์˜ ํ™”ํ์˜ ์˜๋ฏธ

    No full text
    1970๋…„๋Œ€ ๊ฒฝ์ œ์„ฑ์žฅ์— ๋Œ€ํ•œ ๋Œ“๊ฐ€๋Š” ๊ณ ์Šค๋ž€ํžˆ ๊ตญํ† ์„ฑ์žฅ๊ณผ ๊ธ‰์†ํ•œ ๋„์‹œํ™” ์‚ฌ์—…๊ณผ ๋งž๋ฌผ๋ ธ๋‹ค. ๊ตญ๋ฏผ์ด์ƒ์‚ฐ๋Ÿ‰์— ๋น„ํ•ด์„œ ์‚ฐ์—…ํ™”์™€ ๋„์‹œํ™”๋Š” ๋”์šฑ ๋น ๋ฅด๊ฒŒ ์ง„์ „๋˜์—ˆ๋‹ค. ์ด๋•Œ์˜ ์„œ์šธ์€ ํˆฌ๊ธฐ์–ต์ œ ์ข…ํ•ฉ๋Œ€์ฑ…์ด ํ•„์š”ํ•œ ์‹œ์ ์ด์—ˆ๋‹ค. ์ด๋Ÿฐ ๊ด€์ ์—์„œ ๋ฐ•์™„์„œ์˜ ใ€Ž๋„์‹œ์˜ ํ‰๋…„ใ€์— ๋‚˜ํƒ€๋‚œ ์„œ์šธ์€ ๋‹จ์ˆœํ•œ ๊ณต๊ฐ„๊ตฌํš์ด๋‚˜, ์‚ถ์˜ ์•ˆ์ •์„ฑ์„ ๋‹ด๋ณด๋กœ ํ•˜๋Š” ๋ฌด๋Œ€๋ผ๊ธฐ๋ณด๋‹ค๋Š”, ์„œ์šธ์˜ ์ค‘์‹ฌ์— ์ง„์ž…ํ•˜๊ณ ์ž ํ•˜๋Š” ์ˆ˜๋งŽ์€ ์ธ๊ฐ„๊ตฐ์ƒ์˜ ์š•๋ง์ด ์ง‘๊ฒฐ๋œ ๊ณณ์œผ๋กœ, ์ด ๋„์‹œ๋ฅผ ์†Œ์œ ํ•  ์ˆ˜ ์žˆ๋Š” ์ž๊ฐ€ ๋ˆ„๊ตฌ์ธ์ง€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ์ด๊ธ€์—์„œ๋Š” ๋„์‹œ์— ์œ ์ž…๋œ ํ™”ํ๊ฐ€์น˜์˜ ํŠน์ง•๊ณผ, ์ด๋Ÿฌํ•œ ๅฏŒ๋ฅผ ์†Œ์œ ํ•œ ์ฃผ์ธ๊ณต์ด ๋ˆ„๊ตฌ์ธ์ง€์— ๋Œ€ํ•ด์„œ ์ฃผ๋ชฉํ•˜์˜€๋‹ค. ํ™”ํ๋ฅผ ์†Œ์œ ํ•œ๋‹ค๋Š” ๊ฒƒ์€ ๊ฐœ์ธ์˜ ๋‚ด๋ฉด์  ์ƒํƒœ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‚ถ์˜ ๋ชจ๋“  ์ธก๋ฉด, ์ธ๊ฐ„๋“ค์˜ ๊ด€๊ณ„๊นŒ์ง€ ๊ธˆ์ „๋ฌธํ™”๋กœ ์ธก๋Ÿ‰ํ•ด ๋ณผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณด๋‹ค ์‹ค์ฆ์ ์ธ ์†Œ์„ค ๋…๋ฒ•์ผ ์ˆ˜ ์žˆ๋‹ค. ใ€Ž๋„์‹œ์˜ ํ‰๋…„ใ€์— ๋“ฑ์žฅํ•œ โ€œ์–‘์ƒ‰์‹œ ์žฅ์‚ฌโ€๋Š” ๋จน๊ณ  ์‚ด๊ธฐ์œ„ํ•œ ์ƒ์กด์˜ ๋ฌธ์ œ๋กœ ํŒŒ์•…๋  ์ˆ˜ ์žˆ๋‹ค. ํ•œ๊ตญ์˜ ๋…ธ๋™์‹œ์žฅ์—์„œ โ€œ์–‘์ƒ‰์‹œ ์žฅ์‚ฌโ€๋Š” ์‹ค์ œ ๊ทธ ์–ด๋–ค ์ง์—…๊ตฐ์œผ๋กœ๋„ ์„ค๋ช…๋˜์ง€ ์•Š์œผ๋ฉฐ, ๋…ธ๋™์˜ ํ™”ํ์  ๊ฐ€์น˜๋กœ ํ‰๊ฐ€๋˜์ง€ ์•Š์•˜๋‹ค. ํ†ต๊ณ„ํ•™์ ์œผ๋กœ ์žกํžˆ์ง€ ์•Š๋Š” ์€ํ๋œ ๋งค๋งค์ถ˜ ์‚ฌ์—…์„ ํ†ตํ•ด ๋‹ฌ๋Ÿฌ๋ฅผ ๋ฒŒ์–ด๋“ค์ด๋Š” ์žฅ๋ฉด์€, ๊ธฐ๋ก์— ๋‚จ์ง€ ์•Š์•˜๋˜ ์—ฌ์„ฑ ๊ฒฝ์ œ ์ธ๊ตฌ์™€ ๊ธฐํ˜•์  ๊ฒฝ์ œ๊ตฌ์กฐ์˜ ์™œ๊ณก๋œ ์กฐ์šฐ๋ฅผ ๋œปํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ ‡๊ฒŒ ์ถ•์ ํ•œ ๋ถ€์˜ ์‚ฐ๋ฌผ์ด ์—ฌ์„ฑ ๊ฒฝ์ œ ์ฃผ์ฒด์˜ ํ„ํ›ผ์™€ ๋”๋ถˆ์–ด ๊ธฐํ˜•์ ์œผ๋กœ ํŒฝ์ฐฝํ•˜๊ณ  ๋ถ€์˜ ํŽธ์ค‘ํ™”๊ฐ€ ๊ธ‰์†๋„๋กœ ํผ์งˆ ์ˆ˜ ๋ฐ–์— ์—†๋Š”, ๋‹ฌ๋Ÿฌ๋ฒŒ๊ธฐ์— ํ˜ˆ์•ˆ์ด ๋˜์–ด ์žˆ์—ˆ๋˜ ํ•œ๊ตญ์˜ ๊ฒฝ์ œ ๊ตฌ์กฐ์˜ ์ทจ์•ฝ์ ์„ ์ฆ๋ช…ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์‹ค์ œ ์ด ๋ถ€๋ถ„์—์„œ ๋ฐ•์™„์„œ๋Š” ๋น„๊ฐ€์‹œ์ ์œผ๋กœ ์žกํžˆ๋˜ ์—ฌ์„ฑ ๊ฒฝ์ œ ์ธ๊ตฌ ํ†ต๊ณ„๋ฅผ ์ˆ˜๋ฉด์œ„๋กœ ๋Œ์–ด๋‚ด์–ด ์†Œ์„ค์˜ ์ฃผ์ฒด๋กœ ๋ถ€ํ™œ์‹œ์ผฐ๋‹ค. ์‹ค์งˆ์ ์ธ ๊ฒฝ์ œ์  ์ฃผ์ฒด๋กœ ๊ฐ€๋Š ๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ์—ฌ์„ฑ์˜ โ€˜๋‹ฌ๋Ÿฌ๋ฒŒ์ดโ€™๊ฐ€ ์†Œ์„ค์— ๋“ฑ์žฅํ•˜์˜€๊ณ , ๊ทธ๋“ค์ด ๋ฒŒ์–ด๋“ค์ธ ์ž๋ณธ์€ ๊ฒฐ๊ตญ ์—ฌ์„ฑ๊ฒฝ์ œ๋ฅผ ํ™œ์„ฑํ™” ์‹œํ‚ฌ ์„ฑ์žฅ ๋™๋ ฅ์ด๊ธฐ๋„ ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์†Œ์„ค์—์„œ ํ™”ํ๊ฐ€์น˜๋กœ์„œ ์žฌ๋‹จ๋  ์‚ถ์ด ์–ผ๋งˆ๋‚˜ ๋ฏธ์ˆ™ํ•œ ์žฃ๋Œ€๋กœ ์ฆ๋ช…๋˜๊ณ  ์žˆ๋Š”๊ฐ€๋ฅผ ์ž‘๊ฐ€๋Š” ์ข…์ข… ๋ฌป๊ณ  ์žˆ์—ˆ๋‹ค. ๋ณดํŽธ์ ์ธ ์ƒํ˜ธ ๊ด€๊ณ„๊ฐ€ ๋Œ€๋“ฑํ• ๋•Œ ์žฌํ™”๋Š” ๊ฐ€์น˜ํ‰๊ฐ€์˜ ์˜๋ฏธ๋ฅผ ์ง€๋‹Œ๋‹ค. ์†Œ์„ค์˜ ๋ฌผ์งˆ์  ํ’์š”๋กœ์›€์€ ์‚ถ์˜ ํ–‰๋ณต๊นŒ์ง€ ๋‹ด๋ณดํ•ด ์ฃผ์ง„ ์•Š๊ณ  ์žˆ๋‹ค. ใ€Ž๋„์‹œ์˜ ํ‰๋…„ใ€์—์„œ ์ด๋ชจ์˜ ์ ์‚ฐ๊ฐ€์˜ฅ์—์„œ ์‹œ์ž‘๋œ ์–‘๊ณต์ฃผ ์žฅ์‚ฌ, ๋นˆ์ง‘์—์„œ ๋น„๋‹จ์ด๋ถˆ์„ ํ›”์ณ์„œ ์ž์‹๋“ค์—๊ฒŒ ๋ฎ์–ด์ฃผ๋Š” ํ–‰์œ„๋ฅผ โ€˜๋ชจ์„ฑ์• โ€™๋ผ๊ณ  ๋ฏฟ๋Š” ์ฐฉ๊ฐ, ์ˆ˜ํฌ์˜ ์ƒ๋ฅ˜์ธต ์ธํ…Œ๋ฆฌ์–ด์— ๋Œ€ํ•œ ์ง‘์ฐฉ, ์ง‘์•ˆ์˜ ๊ถŒ๋ ฅ์„ ์–ป๊ธฐ ์œ„ํ•ด ๋ฒ•๊ด€ ์„œ์žฌํ˜ธ๋ฅผ ๋ง์‚ฌ์œ„๋กœ ๋“ค์–ด์•‰ํžˆ๋Š” ์ด ๋ชจ๋“  ๊ฒƒ์€ ํ™”ํ๊ฐ€์น˜์— ๋Œ€ํ•œ ๋‘”๊ฐํ•จ์ด๊ธฐ๋„ ํ•˜๋‹ค. ํ™”ํ๋Š” ๋ชจ๋“  ํ˜„์ƒ๋“ค์— ๊ณตํ†ต์ ์ธ ๊ฒƒ, ์ฆ‰ ๋ชจ๋“  ์„ฑ์งˆ๊ณผ ํŠน์„ฑ์„ ๋‹จ์ง€ ์ˆ˜๋Ÿ‰์ ์ธ ๋ฌธ์ œ๋กœ ํ‰์ค€ํ™”์‹œํ‚ค๋Š” ๊ตํ™˜ ๊ฐ€์น˜๋งŒ์„ ๋ฌธ์ œ ์‚ผ๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ฐ„์˜ ๊ฐ€์žฅ ์ธ๊ฒฉ์ ์ธ ๊ตฌ์กฐ์—๋„ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ์ž๋ณธ ์ถ•์ ์— ๋Œ€ํ•œ ์งˆ๋ฌธ์œผ๋กœ ์ฑ„์›Œ์ง„ ์†Œ์„ค์˜ ์ „๋ฐ˜๋ถ€๋ฅผ ์—ผ๋‘ํ•  ๋•Œ ๊ฒฝ์ œ์  ๋ชฐ๋ฝ์œผ๋กœ ์น˜๋‹ซ๋Š” ์†Œ์„ค์˜ ๊ฒฐ๋ก ์€ ์•„์ด๋Ÿฌ๋‹ˆํ•˜๋‹ค. โ€œ์ƒˆ๋กœ์šด ๋ฒˆ์˜๊ธฐ์— ๋ฒผ๋ฝ์น˜๊ธฐ๋กœ ๋ถ€์ž๋˜๋Š” ์†๋„๋ฅผ ๋”ฐ๋ผ ๋ถˆ๋ฆฌ๋Š” ์ผโ€์ด ๊ฐœ์ธ์ด ๋…ธ๋ ฅ๋งŒ์œผ๋กœ ์‰ฝ์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Š” ํ•œ๊ตญ ๊ฒฝ์ œ์˜ ๋ณ€ํ™”๋œ ๋ชจ์Šต์„ ๋”ฐ๋ผ์žก์ง€ ๋ชปํ•˜๋Š” ๋ณด์ˆ˜์  ๊ฐ€๊ณ„ ๊ฒฝ์ œ๊ฐ€ ๊ฒฐ๊ตญ ์ฒจ์˜ˆํ•œ ์ž๋ณธ ์‹œ์žฅ์—์„œ ์ขŒ์ ˆ๋จ์„ ์—ฌ์‹คํžˆ ๋ณด์—ฌ์ฃผ๋Š” ์ฆ๊ฑฐ๋ผ ํ•  ๊ฒƒ์ด๋‹ค. ๋ฐ•์™„์„œ๋Š” ๊ทธ์˜ ์ˆ˜ํ•„์—์„œ โ€œ๋ˆ์ด ๊ท€ํ•˜๋‹ค๋Š” ๊ฑธ ์•Œ๊ฒŒ ํ•˜๋ ค๊ณ  ํ•˜๊ธด ํ–ˆ์ง€๋งŒ, ๋ˆ์ด ๊ฐ€์žฅ ๊ท€ํ•œ ๊ฑธ๋กœ ์•Œ๊ธฐ๋ฅผ ๋ฐ”๋ผ์ง„ ์•Š์•˜๊ณ , ํ–‰์—ฌ๋‚˜ ๋ˆ์— ์›ํ•œ์ด ๋งบํžˆ๊ฑฐ๋‚˜, ๋ˆ์— ์—ฐ์—ฐํ•˜๋Š” ์‚ฌ๋žŒ์ด ๋ ๊นŒ๋ดโ€ ๋ฐ•์™„์„œ, ใ€Œ์–ด๋Š ์šฐ์šธํ•œ ์•„์นจใ€, ใ€Ž์šฐ๋ฆฌ๋ฅผ ๋‘๋ ต๊ฒŒ ํ•˜๋Š” ๊ฒƒ๋“คใ€, ๋ฌธํ•™๋™๋„ค, 2017, 142๋ฉด. ์ „์ „๊ธ๊ธํ–ˆ๋˜ ์ž์‹ ์˜ ๋ชฉ์†Œ๋ฆฌ๋ฅผ ๋‚ธ ๋ฐ” ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฐ•์™„์„œ์˜ ๋ชฉ์†Œ๋ฆฌ๋Š” ์ด์ œ 1970๋…„๋Œ€ ํ•œ๊ตญ ์‚ฌํšŒ์˜ ๊ฒฝ์ œ๋…ผ๋ฆฌ์™€ ํ•จ๊ป˜ ์ฝ์„ ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ใ€Ž๋„์‹œ์˜ ํ‰๋…„ใ€์„ ํ™”ํ๋ฅผ ํ†ตํ•ด ๋ช…๋ฏผํ•˜๊ฒŒ ์ฝ์–ด์•ผ ํ•˜๋Š” ์ด์œ ๋„ ์—ฌ๊ธฐ์— ์žˆ๋‹ค.2

    Critical role of sphingosine-1-phosphate-induced signaling in vascular endothelial cell migration and vascular stabilization

    No full text
    Sphingosine-1-phosphate (S1P), a platelet-derived bioactive lipid, is a potent regulator of angiogenesis. However, the molecular mechanisms involved in S1P-induced angiogenic responses are not defined. Therefore we investigated the role of S1P-induced signaling in two critical steps of angiogenesis, endothelial cell (EC) migration and subsequent vascular stabilization by investment of mural cells. S1P-induced EC migration is mediated through S1P1 and S1P3 as respective antisense oligonucleotides potently inhibited the response. Both receptors activate Rho and Rac small GTPases. Inhibition of Rho by C3 blocks S1P-induced EC attachment, spreading, and migration, suggesting S1P signaling via Rho is important for cell migration. S1P induced Rho-dependent integrin ฮฑvฮฒ3 and ฮฒ1 activation, leading to effective cell migration and morphogenesis in 3D-fibrin matrix. Upon formation of new blood vessels, the integrity and stability of vasculature develops by the support and interaction with mural cells. Destabilization of mature vessels is often observed in cancer and vascular diseases. Therefore, we investigated the molecular basis of S1P-induced vascular stabilization. S1P activation of SIP1 induced activation and cell-surface trafficking of N-cadherin and it was required for proper EC-mural cell interaction. The activation of S1P1/Gi/Rac axis induced rapid polymerization of microtubules which delivers N-cadherin to polarized microdomains on the apical surface of EC. The strength of N-cadherin-dependent adhesion is further enhanced by regulated phosphorylation of p120ctn and N-cadherin by S1P1 signaling in EC. Furthermore N-cadherin forms an intracellular protein complex including catenins, focal adhesion kinase (FAK), paxillin, cortactin and ฮฒ3 integrin. Perturbation of N-cadherin expression with small interfering RNA attenuated vascular stabilization in vitro and in vivo. The mechanisms uncovered in the current study may be useful to control angiogenesis and vessel stability during the disease progression and the development of novel approaches in therapeutic angiogenesis.
    • โ€ฆ
    corecore