337 research outputs found

    Continuous deformations of the Grover walk preserving localization

    Full text link
    The three-state Grover walk on a line exhibits the localization effect characterized by a non-vanishing probability of the particle to stay at the origin. We present two continuous deformations of the Grover walk which preserve its localization nature. The resulting quantum walks differ in the rate at which they spread through the lattice. The velocities of the left and right-traveling probability peaks are given by the maximum of the group velocity. We find the explicit form of peak velocities in dependence on the coin parameter. Our results show that localization of the quantum walk is not a singular property of an isolated coin operator but can be found for entire families of coins

    Late Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes

    Get PDF
    Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian-Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid's water level was low (high δ18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high δ13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower δ18Ocalcite suggest increase in humidity and lake levels till around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid δ13Corg are complacent, in contrast Lake Prespa shows consistently higher δ13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high δ18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low δ18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest δ18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka δ18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low δ18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean

    A case report of refractory angina in a patient with diabetes and apical hypertrophic cardiomyopathy

    Get PDF
    Background: Using serial imaging over time, this case reviews the natural history of co-morbid Type two diabetes (T2D) and apical hypertrophic cardiomyopathy (HCM) and assesses the potential combined impact on myocardial structure and perfusion. Case summary: A 59-year-old patient with concomitant T2D and an apical phenotype of HCM was seen over a 11-year period with a significant burden of anginal chest pain. Chest pain was refractory to anti-anginal medical therapy and persisted at on-going follow-up. Multi-modality imaging demonstrated significant deterioration in coronary microvascular function and increased myocardial scar burden despite unobstructed epicardial coronary arteries. Discussion: Comorbidity with T2D and apical HCM resulted in a significant increase in myocardial fibrosis and deterioration in coronary microvascular function

    The mitochondrial genome of Parascaris univalens - implications for a “forgotten” parasite

    Get PDF
    © Jabbar et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The file attached is the Published/publisher’s pdf version of the article

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex

    Wehrl information entropy and phase distributions of Schrodinger cat and cat-like states

    Get PDF
    The Wehrl information entropy and its phase density, the so-called Wehrl phase distribution, are applied to describe Schr\"odinger cat and cat-like (kitten) states. The advantages of the Wehrl phase distribution over the Wehrl entropy in a description of the superposition principle are presented. The entropic measures are compared with a conventional phase distribution from the Husimi Q-function. Compact-form formulae for the entropic measures are found for superpositions of well-separated states. Examples of Schr\"odinger cats (including even, odd and Yurke-Stoler coherent states), as well as the cat-like states generated in Kerr medium are analyzed in detail. It is shown that, in contrast to the Wehrl entropy, the Wehrl phase distribution properly distinguishes between different superpositions of unequally-weighted states in respect to their number and phase-space configuration.Comment: 10 pages, 4 figure

    The meeting problem in the quantum random walk

    Full text link
    We study the motion of two non-interacting quantum particles performing a random walk on a line and analyze the probability that the two particles are detected at a particular position after a certain number of steps (meeting problem). The results are compared to the corresponding classical problem and differences are pointed out. Analytic formulas for the meeting probability and its asymptotic behavior are derived. The decay of the meeting probability for distinguishable particles is faster then in the classical case, but not quadratically faster. Entangled initial states and the bosonic or fermionic nature of the walkers are considered

    Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets

    Get PDF
    Background: Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or “husk”). There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt) genomes of Dictyocaulus viviparus (from Bos taurus) with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus), used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. Methods: The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer) by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI), also employing data for other strongylids for comparative purposes. Results: The circular mt genomes were 13,310 bp (D. viviparus) and 13,296 bp (Dictyocaulus sp. cf. eckerti) in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of selected members of the superfamilies Metastrongyloidea, Trichostrongyloidea, Ancylostomatoidea and Strongyloidea. Conclusions: Consistent with previous findings for nuclear ribosomal DNA sequence data, the present analyses indicate that Dictyocaulus sp. cf. eckerti (red deer) and D. viviparus are separate species. Barcodes in the two mt genomes and proteomes should serve as markers for future studies of the population genetics and/or epidemiology of these and related species of Dictyocaulus.This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The attached file is the published pdf

    Exercise cardiovascular magnetic resonance: feasibility and development of biventricular function and great vessel flow assessment, during continuous exercise accelerated by Compressed SENSE: preliminary results in healthy volunteers

    Get PDF
    Purpose Exercise cardiovascular magnetic resonance (Ex-CMR) typically requires complex post-processing or transient exercise cessation, decreasing clinical utility. We aimed to demonstrate the feasibility of assessing biventricular volumes and great vessel flow during continuous in-scanner Ex-CMR, using vendor provided Compressed SENSE (C-SENSE) sequences and commercial analysis software (Cvi42). Methods 12 healthy volunteers (8-male, age: 35 ± 9 years) underwent continuous supine cycle ergometer (Lode-BV) Ex-CMR (1.5T Philips, Ingenia). Free-breathing, respiratory navigated C-SENSE short-axis cines and aortic/pulmonary phase contrast magnetic resonance (PCMR) sequences were validated against clinical sequences at rest and used during low and moderate intensity Ex-CMR. Optimal PCMR C-SENSE acceleration, C-SENSE-3 (CS3) vs C-SENSE-6 (CS6), was further investigated by image quality scoring. Intra-and inter-operator reproducibility of biventricular and flow indices was performed. Results All CS3 PCMR image quality scores were superior (p  0.93). During Ex-CMR, biventricular end-diastolic volumes (EDV) remained unchanged, except right-ventricular EDV decreasing at moderate exercise. Biventricular ejection-fractions increased at each stage. Exercise biventricular cine and PCMR stroke volumes correlated very strongly (r ≥ 0.9), demonstrating internal validity. Intra-observer reproducibility was excellent, co-efficient of variance (COV) < 10%. Inter-observer reproducibility was excellent, except for resting right-ventricular, and exercise bi-ventricular end-systolic volumes which were good (COV 10–20%). Conclusion Biventricular function, aortic and pulmonary flow assessment during continuous Ex-CMR using CS3 sequences is feasible, reproducible and analysable using commercially available software

    Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

    Get PDF
    Background: Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results: The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions: The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species.© 2013 Jabbar et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    corecore