16 research outputs found
BLOB : A Probabilistic Model for Recommendation that Combines Organic and Bandit Signals
A common task for recommender systems is to build a pro le of the interests
of a user from items in their browsing history and later to recommend items to
the user from the same catalog. The users' behavior consists of two parts: the
sequence of items that they viewed without intervention (the organic part) and
the sequences of items recommended to them and their outcome (the bandit part).
In this paper, we propose Bayesian Latent Organic Bandit model (BLOB), a
probabilistic approach to combine the 'or-ganic' and 'bandit' signals in order
to improve the estimation of recommendation quality. The bandit signal is
valuable as it gives direct feedback of recommendation performance, but the
signal quality is very uneven, as it is highly concentrated on the
recommendations deemed optimal by the past version of the recom-mender system.
In contrast, the organic signal is typically strong and covers most items, but
is not always relevant to the recommendation task. In order to leverage the
organic signal to e ciently learn the bandit signal in a Bayesian model we
identify three fundamental types of distances, namely action-history,
action-action and history-history distances. We implement a scalable
approximation of the full model using variational auto-encoders and the local
re-paramerization trick. We show using extensive simulation studies that our
method out-performs or matches the value of both state-of-the-art organic-based
recommendation algorithms, and of bandit-based methods (both value and
policy-based) both in organic and bandit-rich environments.Comment: 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Aug 2020, San Diego, United State
Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage
Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use meta-genomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.Peer reviewe
Setting a baseline for global urban virome surveillance in sewage
The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective