783 research outputs found

    Hopelessly Mortal: The Role of Mortality Salience, Immortality and Trait Self-esteem in Personal Hope

    Get PDF
    Do people lose hope when thinking about death? Based on Terror Management Theory, we predicted that thoughts of death (i.e., mortality salience) would reduce personal hope for people low, but not high, in self-esteem, and that this reduction in hope would be ameliorated by promises of immortality. In Studies 1 and 2, mortality salience reduced personal hope for people low in self-esteem, but not for people high in self-esteem. In Study 3, mortality salience reduced hope for people low in self-esteem when they read an argument that there is no afterlife, but not when they read “evidence” supporting life after death. In Study 4, this effect was replicated with an essay affirming scientific medical advances that promise immortality. Together, these findings uniquely demonstrate that thoughts of mortality interact with trait self-esteem to cause changes in personal hope, and that literal immortality beliefs can aid psychological adjustment when thinking about death. Implications for understanding personal hope, trait self-esteem, afterlife beliefs and terror management are discussed

    Use (open research) data in teaching (UDIT): An open online resource

    Get PDF
    Presentation at the European Conference on Information Literacy (ECIL), Oulu, 24.09. - 27.09.18 (http://ilconf.org/)

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: © 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary

    Get PDF
    A novel planctomycetal strain, designated Pla85_3_4τ^{τ}, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 μm, width: 1.2 ± 0.3 μm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4τ^{τ} grows at ranges of 10–30 °C (optimum 26 °C) and at pH 6.5–10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4τ^{τ} (DSM 103796τ^{τ} = LMG 29741τ^{τ}) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov

    Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area

    Get PDF
    Pan44T^{T}, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T^{T} is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T^{T} from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T^{T} (DSM 29405T^{T} = LMG 29788T^{T}) as the type strain

    Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes

    Get PDF
    Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T^{T} isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52T^{T} shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52T^{T} have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52T^{T} at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52T^{T} = LMG 29463T^{T} = VKM B-3447T^{T} should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov

    Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy

    Get PDF
    Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55\ub0C and pH 5.0. The highest growth rate is obtained using H2 as energy source (\u3bcmax 0.19 \ub1 0.02 h\u20131, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 \ub1 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions

    Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland

    Get PDF
    A novel planctomycetal strain, designated Q31aτ^{τ}, was isolated from a jellyfish at the shore of the island Helgoland in the North Sea. The strain forms lucid white colonies on solid medium and displays typical characteristics of planctomycetal strains, such as division by budding, formation of rosettes, presence of crateriform structures, extracellular matrix or fibre and a holdfast structure. Q31aτ^{τ} is mesophilic (temperature optimum 27 °C), neutrophilic (pH optimum 7.5), aerobic and heterotrophic. A maximal growth rate of 0.017 h1^{-1} (generation time of 41 h) was observed. Q31aτ^{τ} has a genome size of 8.44 Mb and a G + C content of 55.3%. Phylogenetically, the strain represents a novel genus and species in the recently introduced family Pirellulaceae, order Pirellulales, class Planctomycetia.We propose the name Aureliella helgolandensis gen. nov., sp. nov. for the novel species, represented by Q31aτ^{τ} (= DSM 103537τ^{τ}= LMG 29700τ^{τ}) as the type strain
    corecore