12 research outputs found

    Microbial Monitoring of Common Opportunistic Pathogens by Comparing Multiple Real-Time PCR Platforms for Potential Space Applications

    Get PDF
    Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness

    The Potential and Challenges of Nanopore Sequencing

    Get PDF
    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic

    Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40

    Get PDF

    Randomized Phase II Trial of Three Schedules of Pemetrexed and Gemcitabine as Front-Line Therapy for Advanced Non-Small-Cell Lung Cancer.

    No full text
    PURPOSE: A randomized three-arm phase II study was undertaken to evaluate the optimum administration schedule of pemetrexed and gemcitabine in chemotherapy-naïve patients with non-small-cell lung cancer. PATIENTS AND METHODS: Patients were randomly assigned to three schedules of pemetrexed 500 mg/m2 plus gemcitabine 1,250 mg/m2, separated by a 90-minute interval, on a 21-day cycle as follows: schedule A, pemetrexed followed by gemcitabine on day 1 and gemcitabine on day 8; schedule B, gemcitabine followed by pemetrexed on day 1 and gemcitabine on day 8; and schedule C, gemcitabine on day 1 and pemetrexed followed by gemcitabine on day 8. RESULTS: One hundred fifty-two eligible patients (schedule A, n = 59; schedule B, n = 31, and schedule C, n = 62) received a median of five (schedule A), two (schedule B), and four (schedule C) treatment cycles. Overall, 66% of patients experienced grade 3 or 4 neutropenia. Common grade 3 and 4 nonhematologic toxicities were dyspnea (11%), fatigue (16%), and transaminase elevation (9%). Schedule A seemed less toxic compared with schedule C (grade 3 or 4 events: 86% v 94%, respectively; P = .19; grade 4 events: 39% v 48%, respectively; P = .30). Schedule B was closed at interim analysis for inferior efficacy. Schedule A, with a confirmed response rate of 31% (95% CI, 20% to 45%), met the protocol-defined efficacy criteria, whereas schedule C, with a confirmed response rate of 16.1% (95% CI, 11% to 34%), did not. Median survival time and time to progression were 11.4 and 4.4 months, respectively, with no observable difference between the arms. CONCLUSION: Pemetrexed and gemcitabine administered as outlined for schedule A met the protocol-defined efficacy criteria, was less toxic compared with the other treatment schedules, and should be further evaluated

    The sequence and analysis of duplication-rich human chromosome 16

    Get PDF
    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,670 aligned transcripts, 19 transfer RNA genes, 341 pseudogenes and three RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukaemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. Whereas the segmental duplications of chromosome 16 are enriched in the relatively gene-poor pericentromere of the p arm, some are involved in recent gene duplication and conversion events that are likely to have had an impact on the evolution of primates and human disease susceptibility.Joel Martin, Cliff Han, Laurie A. Gordon, Astrid Terry, Shyam Prabhakar, Xinwei She, Gary Xie, Uffe Hellsten, Yee Man Chan, Michael Altherr, Olivier Couronne, Andrea Aerts, Eva Bajorek, Stacey Black, Heather Blumer, Elbert Branscomb, Nancy C. Brown, William J. Bruno, Judith M. Buckingham, David F. Callen, Connie S. Campbell, Mary L. Campbell, Evelyn W. Campbell, Chenier Caoile, Jean F. Challacombe, Leslie A. Chasteen, Olga Chertkov, Han C. Chi, Mari Christensen, Lynn M. Clark, Judith D. Cohn, Mirian Denys, John C. Detter, Mark Dickson, Mira Dimitrijevic-Bussod, Julio Escobar, Joseph J. Fawcett, Dave Flowers, Dea Fotopulos, Tijana Glavina, Maria Gomez, Eidelyn Gonzales, David Goodstein, Lynne A. Goodwin, Deborah L. Grady, Igor Grigoriev, Matthew Groza, Nancy Hammon, Trevor Hawkins, Lauren Haydu, Carl E. Hildebrand, Wayne Huang, Sanjay Israni, Jamie Jett, Phillip B. Jewett, Kristen Kadner, Heather Kimball, Arthur Kobayashi, Marie-Claude Krawczyk, Tina Leyba, Jonathan L. Longmire, Frederick Lopez, Yunian Lou, Steve Lowry, Thom Ludeman, Chitra F. Manohar, Graham A. Mark, Kimberly L. McMurray, Linda J. Meincke, Jenna Morgan, Robert K. Moyzis, Mark O. Mundt, A. Christine Munk, Richard D. Nandkeshwar, Sam Pitluck, Martin Pollard Paul Predki, Beverly Parson-Quintana, Lucia Ramirez, Sam Rash, James Retterer, Darryl O. Ricke, Donna L. Robinson, Alex Rodriguez, Asaf Salamov, Elizabeth H. Saunders, Duncan Scott, Timothy Shough, Raymond L. Stallings, Malinda Stalvey, Robert D. Sutherland, Roxanne Tapia, Judith G. Tesmer, Nina Thayer, Linda S. Thompson, Hope Tice, David C. Torney, Mary Tran-Gyamfi, Ming Tsai, Levy E. Ulanovsky, Anna Ustaszewska, Nu Vo, P. Scott White, Albert L. Williams, Patricia L. Wills, Jung-Rung Wu, Kevin Wu, Joan Yang, Pieter DeJong, David Bruce, Norman A. Doggett, Larry Deaven, Jeremy Schmutz, Jane Grimwood, Paul Richardson, Daniel S. Rokhsar, Evan E. Eichler, Paul Gilna, Susan M. Lucas, Richard M. Myers, Edward M. Rubin and Len A. Pennacchi

    International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci

    Get PDF
    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations
    corecore