175 research outputs found

    Dewetting of thin polymer films: Influence of interface evolution

    Full text link
    The dewetting dynamics of ultrathin polymer films, e.g. in the model system of polystyrene on a polydimethylsiloxane-covered substrate, exhibits interesting behavior like a fast decay of the dewetting velocity and a maximum in the width of the built-up rim in the course of time. These features have been recently ascribed to the relaxation of residual stresses in the film that stem from the nonequilibrium preparation of the samples. Recent experiments by Coppee et al. on PS with low molecular weight, where such stresses could not be evidenced, showed however similar behavior. By scaling arguments and numerical solution of a thin film viscoelastic model we show that the maximum in the width of the rim can be caused by a temporal evolution of the friction coefficient (or equivalently of the slip length), for which we discuss two possible mechanisms. In addition, the maximum in the width is affected by the sample age. As a consequence, knowing the temporal behavior of friction (or slip length) in principle allows to measure the aging dynamics of a polymer-polymer interface by simple dewetting experiments.Comment: 6 pages, 2 figure

    Well dispersed fractal aggregates as filler in polymer-silica nanocomposites: long range effects in rheology

    Get PDF
    We are presenting a new method of processing polystyrene-silica nanocomposites, which results in a very well-defined dispersion of small primary aggregates (assembly of 15 nanoparticles of 10 nm diameter) in the matrix. The process is based on a high boiling point solvent, in which the nanoparticles are well dispersed, and controlled evaporation. The filler's fine network structure is determined over a wide range of sizes, using a combination of Small Angle Neutron Scattering (SANS) and Transmission Electronic Microscopy (TEM). The mechanical response of the nanocomposite material is investigated both for small (ARES oscillatory shear and Dynamical Mechanical Analysis) and large deformations (uniaxial traction), as a function of the concentration of the particles. We can investigate the structure-property correlations for the two main reinforcement effects: the filler network contribution, and a filler-polymer matrix effect. Above a silica volume fraction threshold, we see a divergence of the modulus correlated to the build up of a connected network. Below the threshold, we obtain a new additional elastic contribution of much longer terminal time than the matrix. Since aggregates are separated by at least 60 nm, this new filler-matrix contribution cannot be described solely with the concept of glassy layer (2nm)

    Expanding the Versatility of Phage Display II: Improved Affinity Selection of Folded Domains on Protein VII and IX of the Filamentous Phage

    Get PDF
    Background: Phage display is a leading technology for selection of binders with affinity for specific target molecules. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII) or the minor coat protein III (pIII). Whereas pVIII display suffers from drawbacks such as heterogeneity in display levels and polypeptide fusion size limitations, toxicity and infection interference effects have been described for pIII display. Thus, display on other coat proteins such as pVII or pIX might be more attractive. Neither pVII nor pIX display have gained widespread use or been characterized in detail like pIII and pVIII display. Methodology/Principal Findings: Here we present a side-by-side comparison of display on pIII with display on pVII and pIX. Polypeptides of interest (POIs) are fused to pVII or pIX. The N-terminal periplasmic signal sequence, which is required for phage integration of pIII and pVIII and that has been added to pVII and pIX in earlier studies, is omitted altogether. Although the POI display level on pIII is higher than on pVII and pIX, affinity selection with pVII and pIX display libraries is shown to be particularly efficient. Conclusions/Significance: Display through pVII and/or pIX represent platforms with characteristics that differ from those of the pIII platform. We have explored this to increase the performance and expand the use of phage display. In the paper, we describe effective affinity selection of folded domains displayed on pVII or pIX. This makes both platforms more attractive alternatives to conventional pIII and pVIII display than they were before. © 2011 Wälchli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example

    Get PDF
    © The Author(s) 2017 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/ genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.Peer reviewedFinal Published versio

    Evaluation of lymph node numbers for adequate staging of Stage II and III colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although evaluation of at least 12 lymph nodes (LNs) is recommended as the minimum number of nodes required for accurate staging of colon cancer patients, there is disagreement on what constitutes an adequate identification of such LNs.</p> <p>Methods</p> <p>To evaluate the minimum number of LNs for adequate staging of Stage II and III colon cancer, 490 patients were categorized into groups based on 1-6, 7-11, 12-19, and ≥ 20 LNs collected.</p> <p>Results</p> <p>For patients with Stage II or III disease, examination of 12 LNs was not significantly associated with recurrence or mortality. For Stage II (HR = 0.33; 95% CI, 0.12-0.91), but not for Stage III patients (HR = 1.59; 95% CI, 0.54-4.64), examination of ≥20 LNs was associated with a reduced risk of recurrence within 2 years. However, examination of ≥20 LNs had a 55% (Stage II, HR = 0.45; 95% CI, 0.23-0.87) and a 31% (Stage III, HR = 0.69; 95% CI, 0.38-1.26) decreased risk of mortality, respectively. For each six additional LNs examined from Stage III patients, there was a 19% increased probability of finding a positive LN (parameter estimate = 0.18510, p < 0.0001). For Stage II and III colon cancers, there was improved survival and a decreased risk of recurrence with an increased number of LNs examined, regardless of the cutoff-points. Examination of ≥7 or ≥12 LNs had similar outcomes, but there were significant outcome benefits at the ≥20 cutoff-point only for Stage II patients. For Stage III patients, examination of 6 additional LNs detected one additional positive LN.</p> <p>Conclusions</p> <p>Thus, the 12 LN cut-off point cannot be supported as requisite in determining adequate staging of colon cancer based on current data. However, a minimum of 6 LNs should be examined for adequate staging of Stage II and III colon cancer patients.</p

    Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV

    Get PDF
    In Madagascar, Newcastle disease (ND) has become enzootic after the first documented epizootics in 1946, with recurrent annual outbreaks causing mortality up to 40%. Four ND viruses recently isolated in Madagascar were genotypically and pathotypically characterised. By phylogenetic inference based on the F and HN genes, and also full-genome sequence analyses, the NDV Malagasy isolates form a cluster distant enough to constitute a new genotype hereby proposed as genotype XI. This new genotype is presumably deriving from an ancestor close to genotype IV introduced in the island probably more than 50 years ago. Our data show also that all the previously described neutralising epitopes are conserved between Malagasy and vaccine strains. However, the potential implication in vaccination failures of specific amino acid substitutions predominantly found on surface-exposed epitopes of F and HN proteins is discussed

    The instrument suite of the European Spallation Source

    Get PDF
    An overview is provided of the 15 neutron beam instruments making up the initial instrument suite of the European Spallation Source (ESS), and being made available to the neutron user community. The ESS neutron source consists of a high-power accelerator and target station, providing a unique long-pulse time structure of slow neutrons. The design considerations behind the time structure, moderator geometry and instrument layout are presented. The 15-instrument suite consists of two small-angle instruments, two reflectometers, an imaging beamline, two single-crystal diffractometers; one for macromolecular crystallography and one for magnetism, two powder diffractometers, and an engineering diffractometer, as well as an array of five inelastic instruments comprising two chopper spectrometers, an inverse-geometry single-crystal excitations spectrometer, an instrument for vibrational spectroscopy and a high-resolution backscattering spectrometer. The conceptual design, performance and scientific drivers of each of these instruments are described. All of the instruments are designed to provide breakthrough new scientific capability, not currently available at existing facilities, building on the inherent strengths of the ESS long-pulse neutron source of high flux, flexible resolution and large bandwidth. Each of them is predicted to provide world-leading performance at an accelerator power of 2 MW. This technical capability translates into a very broad range of scientific capabilities. The composition of the instrument suite has been chosen to maximise the breadth and depth of the scientific impact o
    corecore