8 research outputs found

    Akt1 Is Essential for Postnatal Mammary Gland Development, Function, and the Expression of Btn1a1

    Get PDF
    Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1−/− C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1−/− mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1−/− mammary glands. Additionally, pseudopregnant Akt1−/− females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function

    Integration of novel approaches demonstrates simultaneous metabolic inactivation and CAR-mediated hepatocarcinogenesis of a nitrification inhibitor

    No full text
    Nitrapyrin, a nitrification inhibitor, produces liver tumors in mice at high doses. Several experiments were performed to investigate molecular, cellular, and apical endpoints to define the key events leading to the tumor formation. These data support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor activation, increased hepatocellular proliferation leading to hepatocellular foci and tumor formation. Specifically, nitrapyrin induced a dose-related increase in the Cyp2b10/CAR-associated transcript and protein. Interestingly, the corresponding enzyme activity (7-pentoxyresorufin-O-dealkylase (PROD) was not enhanced due to nitrapyrin-mediated suicide inhibition of PROD activity. Nitrapyrin exposure elicited a clear dose-responsive increase in hepatocellular proliferation in wild-type mice, but not in CAR knock-out mice, informing that CAR activation is an obligatory key event in this test material-induced hepatocarcinogenesis. Furthermore, nitrapyrin exposure induced a clear, concentration-responsive increase in cell proliferation in mouse, but not human, hepatocytes in vitro. Evaluation of the data from repeat dose and MoA studies by the Bradford Hill criteria and a Human Relevance Framework (HRF) suggested that nitrapyrin-induced mouse liver tumors are not relevant to human health risk assessment because of qualitative differences between these two species. Keywords: CAR, Mode of action, Pesticide, Metabolic inhibition/suicide inhibition, Human relevance framewor

    Associations of leukocyte telomere length with aerobic and muscular fitness in young adults

    Get PDF
    Decline in both telomere length and physical fitness over the life course may contribute to increased risk of several chronic diseases. The relationship between telomere length and aerobic and muscular fitness is not well characterized. We examined whether there are cross-sectional associations of mean relative leukocyte telomere length (LTL) with objective measures of aerobic fitness, muscle strength, and muscle endurance, using data on 31-year-old participants of the Northern Finland Birth Cohort 1966 (n = 4,952-5,205, varying by exposure-outcome analysis). Aerobic fitness was assessed by means of heart rate measurement following a standardized submaximal step test; muscular fitness was assessed by means of a maximal isometric handgrip strength test and a test of lower-back trunk muscle endurance. Longer LTL was associated with higher aerobic fitness and better trunk muscle endurance in models including adjustment for age, sex, body mass index, socioeconomic position, diet, smoking, alcohol consumption, physical activity level, and C-reactive protein. In a sex-stratified analysis, LTL was not associated with handgrip strength in either men or women. LTL may relate to aspects of physical fitness in young adulthood, but replication of these findings is required, along with further studies to help assess directions and causality in these associations.This work was supported financially by the following institutions: the Academy of Finland (grants 104781, 120315, 129269, 1114194, and 12926); University Hospital Oulu, Biocenter, University of Oulu (grant 75617); the European Commission (grant QLG1-CT-2000-01643); the National Heart, Lung, and Blood Institute, US National Institutes of Health (grant 5R01HL087679-02); the National Institute of Mental Health, US National Institutes of Health (grant 5R01MH63706:02); the Medical Research Council, United Kingdom (grants G0500539 and G0600705); the Wellcome Trust, United Kingdom (grant GR069224); and Diabetes UK (grant 08/0003775). J.L.B. was supported by a Wellcome Trust Fellowship (grant WT088431MA). D.M.W. and M.R.J. were supported by the European Union’s Horizon 2020 research and innovation program under grant agreement DynaHEALTH (grant 633595)
    corecore