10 research outputs found

    A comprehensive assessment of benign genetic variability for neurodegenerative disorders

    Get PDF
    Over the last few years, as more and more sequencing studies have been performed, it has become apparent that the identification of pathogenic mutations is, more often than not, a complex issue. Here, with a focus on neurodegenerative diseases, we have performed a survey of coding genetic variability that is unlikely to be pathogenic. We have performed whole-exome sequencing in 478 samples derived from several brain banks in the United Kingdom and the United States of America. Samples were included when subjects were, at death, over 60 years of age, had no signs of neurological disease and were subjected to a neuropathological examination, which revealed no evidence of neurodegeneration. This information will be valuable to studies of genetic variability as a causal factor for neurodegenerative syndromes. We envisage it will be particularly relevant for diagnostic laboratories as a filter step to the results being produced by either genome-wide or gene-panel sequencing. We have made this data publicly available at www.alzforum.org/exomes/hex

    Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia-like Syndrome Without Bone Involvement

    No full text
    Objective: To identify new genes and risk factors associated with frontotemporal dementia (FTD). Several genes and loci have been associated with different forms of FTD, but a large number of families with dementia do not harbor mutations in these genes

    Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished postmortem. Mutations in 3 genes (APP, PSEN1, and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease. © 2012 Elsevier Inc

    The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease

    No full text
    PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society

    The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease.

    No full text
    PD is a complex polygenic disorder. In recent years, several genes from the endocytic membrane-trafficking pathway have been suggested to contribute to disease etiology. However, a systematic analysis of pathway-specific genetic risk factors is yet to be performed. To comprehensively study the role of the endocytic membrane-trafficking pathway in the risk of PD. Linkage disequilibrium score regression was used to estimate PD heritability explained by 252 genes involved in the endocytic membrane-trafficking pathway including genome-wide association studies data from 18,869 cases and 22,452 controls. We used pathway-specific single-nucleotide polymorphisms to construct a polygenic risk score reflecting the cumulative risk of common variants. To prioritize genes for follow-up functional studies, summary-data based Mendelian randomization analyses were applied to explore possible functional genomic associations with expression or methylation quantitative trait loci. The heritability estimate attributed to endocytic membrane-trafficking pathway was 3.58% (standard error = 1.17). Excluding previously nominated PD endocytic membrane-trafficking pathway genes, the missing heritability was 2.21% (standard error = 0.42). Random heritability simulations were estimated to be 1.44% (standard deviation = 0.54), indicating that the unbiased total heritability explained by the endocytic membrane-trafficking pathway was 2.14%. Polygenic risk score based on endocytic membrane-trafficking pathway showed a 1.25 times increase of PD risk per standard deviation of genetic risk. Finally, Mendelian randomization identified 11 endocytic membrane-trafficking pathway genes showing functional consequence associated to PD risk. We provide compelling genetic evidence that the endocytic membrane-trafficking pathway plays a relevant role in disease etiology. Further research on this pathway is warranted given that critical effort should be made to identify potential avenues within this biological process suitable for therapeutic interventions. © 2019 International Parkinson and Movement Disorder Society

    Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is a genetically complex disorder for which the definite diagnosis is only accomplished post mortem. Mutations in three genes (APP, PSEN1 and PSEN2) are known to cause AD, but a large number of familial cases do not harbor mutations in these genes and several unidentified genes that contain disease-causing mutations are thought to exist. We performed whole exome sequencing in a Turkish patient clinically diagnosed with Alzheimer's disease from a consanguineous family with a complex history of neurological and immunological disorders and identified a mutation in NOTCH3 (p.R1231C), previously described as causing cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Complete screening of NOTCH3 in a cohort of 95 early onset AD cases and 95 controls did not reveal any additional pathogenic mutations. Although the complex history of disease in this family precluded us to establish segregation of the mutation found with disease, our results show that exome sequencing is a rapid, cost-effective and comprehensive tool to detect genetic mutations, allowing for the identification of unexpected genetic causes of clinical phenotypes. As etiological based therapeutics become more common, this method will be key in diagnosing and treating disease

    Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer

    No full text
    Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.A pan-cancer genomic analysis reports the effects of structural variations on chromatin domains (TADs). Most TAD disruptions do not result in appreciable changes in expression of nearby genes
    corecore