57 research outputs found

    A Preliminary Phylogenetic Analysis of the Grass Subfamily Pooideae (Poaceae), with Attention to Structural Features of the Plastid and Nuclear Genomes, Including an Intron Loss in GBSSI

    Get PDF
    Phylogenetic relationships in the grass family (Poaceae), with specific attention to the internal structure of subfamily Pooideae, are analyzed on the basis of nucleotide sequence variation in plastid-encoded genes (matK, ndhF, ndhH, and rbcL). The resulting phylogenetic hypothesis was examined with attention to the taxonomic distributions of two inversions and an insertion/deletion within ndhF, the absence of intron 10 of the nuclear gene GBSSI (waxy), and positions of the boundaries between the Short Single Copy (SSC) region and the neighboring Inverted Repeat (IR) regions of the plastid genome, relative to the endpoints of ndhF and ndhH, which span these boundaries in some taxa. The PACCAD clade is resolved, and extension of the 3\u27-end of ndhF from the SSC region into the IR region is interpreted as a synapomorphy of this clade. The BEP clade also is resolved, with Ehrhartoideae placed as the sister of a clade in which Bambusoideae and Pooideae are sister groups. The loss of GBSSI intron 10 is interpreted as a synapomorphy of Poeae s.l., which includes the traditionally defined tribes Poeae, Aveneae, and Hainardieae, and the results support a novel set of relationships among the tribes of Pooideae, including the placement of Brachypodieae, Bromeae, Triticeae, and Poeae s.l. within a clade for which a three-nucleotide inversion in ndhF is interpreted as a synapomorphy, while a six-nucleotide inversion in ndhF marks a clade that includes all sampled members of subtribe Aveninae within Poeae s.l

    Phylogeny of the Grasses (Poaceae) Revisited

    Get PDF
    The most robust previously published phylogeny for the overall structure of the grass family (Poaceae) shows three early diverging lineages and two major derived clades, the BEP clade and the PACCAD clade (Grass Phylogeny Working Group 2001). A few key taxa were incompletely sampled, however, and support for the BEP clade was moderate at best and relationships among the major lineages within the PACCAD clade remained unresolved. In addition, recent studies indicated that the sister group to Poaceae may be Joinvilleaceae and/or Ecdeiocoleaceae, the latter of which were not previously sampled. In this study, missing structural data were determined and analyzed as well as sequence data for ndhF and rbcL, the two most complete plastid sequence data sets. Sampling was increased with a particular focus on key taxa such as Danthoniopsis, Eriachne, Micraira, and Streptogyna and a representative of the outgroup, Ecdeiocoleaceae. A total of 61 ingroup and two outgroup taxa were analyzed using maximum parsimony for total data, and maximum parsimony, Bayesian inference, and neighbor joining for the molecular data. A strongly supported clade of ((Eriachneae, Isachne) Micraira) was recovered as a sister subfamily to Arundinoideae and excluded from Panicoideae. Arundinaria was strongly united with Bambusoideae. The position of Streptogyna was weakly supported among Ehrhartoideae, and is still unresolved. An outgroup effect on ingroup topology was observed, demonstrating that highly divergent outgroups may unpredictably alter ingroup relationships

    Localized retroprocessing as a model of intron loss in the plant mitochondrial genome

    Get PDF
    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome

    Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    Get PDF
    <div><p>The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of <i>Zostera marina</i> and <i>Stratiotes aloides</i>, which together with previously sequenced mitogenomes from <i>Butomus</i> and <i>Spirodela</i>, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The <i>Zostera</i> mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In <i>Zostera</i> almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus.</p></div

    Phylogeny, Genome Size, and Chromosome Evolution of Asparagales

    Get PDF
    Asparagales are a diverse monophyletic order that has numerous species (ca. 50% of monocots) including important crop plants such as Allium, Asparagus, and Vanilla, and a host of ornamentals such as irises, hyacinths, and orchids. Historically, Asparagales have been of interest partly because of their fascinating chromosomal evolution. We examine the evolutionary dynamics of Asparagales genomes in an updated phylogenetic framework that combines analyses of seven gene regions (atp1, atpB, matK, ndhF, rbcL, trnL intron, and trnL-F intergenic spacer) for 79 taxa of Asparagales and outgroups. Asparagales genomes are evolutionarily labile for many characters, including chromosome number and genome size. The history and causes of variation in chromosome number and genome size remain unclear, primarily because of the lack of data in small clades in the phylogenetic tree and the lack of comparative genetic maps, apart from Allium and Asparagus. Genomic tools such as bacterial artificial chromosome (BAC) libraries should be developed, as both molecular cytogenetic markers and a source of nuclear genes that can be widely used by evolutionary biologists and plant breeders alike to decipher mechanisms of chromosomal evolution

    Mitochondrial Data in Monocot Phylologenetics

    Get PDF
    Mitochondrial sequences are an important source of data in animal phylogenetics, equivalent in importance to plastid sequences in plants. However, in recent years plant systematists have begun exploring the mitochondrial genome as a source of phylogenetically useful characters. The plant mitochondrial genome is renowned for its variability in size, structure, and gene organization, but this need not be of concern for the application of sequence data in phylogenetics. However, the incorporation of reverse transcribed mitochondrial genes ( processed paralogs ) and the recurring transfer of genes from the mitochondrion to the nucleus are evolutionary events that must be taken into account. RNA editing of mitochondrial genes is sometimes considered a problem in phylogenetic reconstruction, but we regard it only as a mechanism that may increase variability at edited sites and change the codon position bias accordingly. Additionally, edited sites may prove a valuable tool in identifying processed paralogs. An overview of genes and sequences used in phylogenetic studies of angiosperms is presented. In the monocots, a large amount of mitochondrial sequence data is being collected together with sequence data from plastid and nuclear genes, thus offering an opportunity to compare data from different genomic compartments. The mitochondrial and plastid data are incongruent when organelle gene trees are reconstructed. Possible reasons for the observed incongruence involve sampling of paralogous sequences and highly divergent substitution rates, potentially leading to longbranch attraction. The above problems are addressed in Acorales, Alismatales, Poales, Liliaceae, the Anthericum clade (in Agavaceae), and in some achlorophyllous taxa

    Multigene Analyses of Monocot Relationships

    Get PDF
    We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported

    Are substitution rates and RNA editing correlated?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.</p> <p>Results</p> <p>We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3<sup>rd </sup>codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but <it>ccm</it>B, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate).</p> <p>Conclusions</p> <p>The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.</p

    Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage

    Get PDF
    © 2007 Botanical Society of America, Inc.The family Hydatellaceae was recently reassigned to the early-divergent angiosperm order Nymphaeales rather than the monocot order Poales. This dramatic taxonomic adjustment allows comparison with other early-divergent angiosperms, both extant and extinct. Hydatellaceae possess some monocot-like features that could represent adaptations to an aquatic habit. Ecophysiological parallels can also be drawn from fossil taxa that are known from small achene-like diaspores, as in Hydatellaceae. Reproductive units of Hydatellaceae consist of perianthlike bracts enclosing several pistils and/or stamens. In species with bisexual reproductive units, a single unit resembles an "inside-out" flower, in which stamens are surrounded by carpels that are initiated centrifugally. Furthermore, involucre development in Trithuria submersa, with delayed growth of second whorl bracts, resembles similar delayed development of the second perianth whorl in Cabomba. Several hypotheses on the homologies of reproductive units in Hydatellaceae are explored. Currently, the most plausible interpretation is that each reproductive unit represents an aggregation of reduced unisexual apetalous flowers, which are thus very different from flowers of Nymphaeales. Each pistil in Hydatellaceae is morphologically and developmentally consistent with a solitary ascidiate carpel. However, ascidiate carpel development, consistent with placement in Nymphaeales, is closely similar to pseudomonomerous pistil development as in Poaes.Paula J. Rudall, Dmitry D. Sokoloff, Margarita V. Remizowa, John G. Conran, Jerrold I. Davis, Terry D. Macfarlane and Dennis W. Stevenso
    corecore