105 research outputs found

    Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns

    Get PDF
    Vegetation uptake of atmospheric mercury (Hg) is an important mechanism enhancing atmospheric Hg deposition via litterfall and senescence. We here report Hg concentration and pool sizes of different plant functional groups and plant species across nine tundra sites in northern Alaska. Significant spatial differences were observed in bulk vegetation Hg concentrations at Toolik Field station (52 ± 9 μg kg−1), Eight Mile Lake Observatory (40 ± 0.2 μg kg−1), and seven sites along a transect from Toolik Field station to the Arctic coast (36 ± 9 μg kg−1). Hg concentrations in non-vascular vegetation including feather and peat moss (58 ± 6 μg kg−1 and 34 ± 2 μg kg−1, respectively) and brown and white lichen (41 ± 2 μg kg−1 and 34 ± 2 μg kg−1, respectively), were three to six times those of vascular plant tissues (8 ± 1 μg kg−1 in dwarf birch leaves and 9 ± 1 μg kg−1 in tussock grass). A high representation of nonvascular vegetation in aboveground biomass resulted in substantial Hg mass contained in tundra aboveground vegetation (29 μg m−2), which fell within the range of foliar Hg mass estimated for forests in the United States (15 to 45 μg m−2) in spite of much shorter growing seasons. Hg stable isotope signatures of different plant species showed that atmospheric Hg(0) was the dominant source of Hg to tundra vegetation. Mass-dependent isotope signatures (δ202Hg) in vegetation relative to atmospheric Hg(0) showed pronounced shifts towards lower values, consistent with previously reported isotopic fractionation during foliar uptake of Hg(0). Mass-independent isotope signatures (Δ199Hg) of lichen were more positive relative to atmospheric Hg(0), indicating either photochemical reduction of Hg(II) or contributions of inorganic Hg(II) from atmospheric deposition and/or dust. Δ199Hg and Δ200Hg values in vascular plant species were similar to atmospheric Hg(0) suggesting that overall photochemical reduction and subsequent re-emission was relatively insignificant in these tundra ecosystems, in agreement with previous Hg(0) ecosystem flux measurements

    Comment on “The biosphere: A homogeniser of Pb-isotope signals” by C. Reimann, B. Flem, A. Arnoldussen, P. Englmaier, T.E. Finne, F. Koller and Ø. Nordgulen

    Get PDF
    Reimann et al. (2008) recently published a study on Pb-isotope signature along a 120 km long transect cutting the city of Oslo. Based on concentration but also isotope data, they misinterpret Pb concentration of the biosphere in rural places and explain these large enrichments of Pb as being due to natural processes. The study ignores numerous previous studies either on local, regional or global scales (see reviews by Shotyk and Le Roux, 2005 and Callender, 2003, and references therein), which clearly demonstrate that anthropogenic Pb emitted in the atmosphere from different sources (leaded gasoline, coal burning, metallurgy, etc.) was and is dispersed worldwide. The study also ignores work on Norway by the Steinnes and colleagues group (Harmens et al., 2008, Steinnes et al., 2005a, Steinnes et al., 2005b and Åberg et al., 2004), and measurements and modelling by the EMEP network (www.emep.int/, EMEP, 2005). The study also neglects numerous works on preanthropogenic Pb deposition rate and isotopic signature using continental archives of atmospheric deposition like peat bogs (Shotyk et al., 1998, Klaminder et al., 2003, Kylander et al., 2005 and Le Roux et al., 2005). These studies have shown that preanthropogenic Pb atmospheric deposition rate and its Pb isotopic signature is regionally defined, but also that those signals are negligible compared to past 2 ka and recent Pb atmospheric fluxes (Table 1)

    Automated Stable Isotope Sampling of Gaseous Elemental Mercury (ISO-GEM): Insights into GEM Emissions from Building Surfaces

    Get PDF
    Atmospheric monitoring networks quantify gaseous elemental mercury (GEM) concentrations, but not isotopic compositions. Here, we present a new method for automated and quantitative stable isotope sampling of GEM (ISO-GEM) at the outlet of a commercial Hg analyzer. A programmable multivalve manifold selects Hg at the analyzer inlet and outlet based on specific criteria (location, time, GEM concentration, auxiliary threshold). Outlet Hg recovery was tested for gold traps, oxidizing acidic solution traps, and activated carbon traps. We illustrate the ISO-GEM method in an exploratory study on the effect of building walls on local GEM. We find that GEM concentrations directly at the building surface (wall inlet) are significantly enhanced (mean 3.8 ± 1.8 ng/m; 3; ) compared to 3 m from the building wall (free inlet) (mean 1.5 ± 0.4 ng/m; 3; ). GEM δ; 202; Hg (-1.26‰ ± 0.41‰, 1 SD, n = 16) and Δ; 199; Hg (-0.05‰ ± 0.10‰, 1 SD, n = 16) at the wall inlet were different from ambient GEM δ; 202; Hg (0.76‰ ± 0.09‰, 1 SD, n = 16) and Δ; 199; Hg (-0.21‰ ± 0.05‰, 1 SD, n = 16) at the free inlet. The isotopic fingerprint of GEM at the wall inlet suggests that GEM emission from the aluminum building surface affected local GEM concentration measurements. These results illustrate the versatility of the automated Hg isotope sampling

    Examination of the ocean as a source for atmospheric microplastics

    Get PDF
    Global plastic litter pollution has been increasing alongside demand since plastic products gained commercial popularity in the 1930’s. Current plastic pollutant research has generally assumed that once plastics enter the ocean they are there to stay, retained permanently within the ocean currents, biota or sediment until eventual deposition on the sea floor or become washed up onto the beach. In contrast to this, we suggest it appears that some plastic particles could be leaving the sea and entering the atmosphere along with sea salt, bacteria, virus’ and algae. This occurs via the process of bubble burst ejection and wave action, for example from strong wind or sea state turbulence. In this manuscript we review evidence from the existing literature which is relevant to this theory and follow this with a pilot study which analyses microplastics (MP) in sea spray. Here we show first evidence of MP particles, analysed by μRaman, in marine boundary layer air samples on the French Atlantic coast during both onshore (average of 2.9MP/m3) and offshore (average of 9.6MP/m3) winds. Notably, during sampling, the convergence of sea breeze meant our samples were dominated by sea spray, increasing our capacity to sample MPs if they were released from the sea. Our results indicate a potential for MPs to be released from the marine environment into the atmosphere by sea-spray giving a globally extrapolated figure of 136000 ton/yr blowing on shore

    Modelling the mercury stable isotope distribution of Earth surface reservoirs: Implications for global Hg cycling

    Get PDF
    Mercury (Hg) stable isotopes are useful to understand Hg biogeochemical cycling because physical, chemical and biological processes cause characteristic Hg isotope mass-dependent (MDF) and mass-independent (MIF) fractionation. Here, source Hg isotope signatures and process-based isotope fractionation factors are integrated into a fully coupled, global atmospheric-terrestrial-oceanic box model of MDF (delta Hg-202), odd-MIF (Delta Hg-199) and even-MIF (Delta Hg-200). Using this bottom-up approach, we find that the simulated Hg isotope compositions are inconsistent with the observations. We then fit the Hg isotope enrichment factors for MDF, odd-MIF and even-MIF to observational Hg isotope constraints. The MDF model suggests that atmospheric Hg-0 photo-oxidation should enrich heavy Hg isotopes in the reactant Hg-0, in contrast to the experimental observations of Hg-0 photo-oxidation by Br. The fitted enrichment factor of terrestrial Hg-0 emission in the odd-MIF model (5 parts per thousand) is likely biased high, suggesting that the terrestrial Hg-0 emission flux (160 Mg yr(-1)) used in our standard model is underestimated. In the even-MIF model, we find that a small positive atmospheric Hg-0 photo-oxidation enrichment factor (0.22 parts per thousand) along with enhanced atmospheric Hg-II photo-reduction and atmospheric Hg-0 dry deposition (foliar uptake) fluxes to the terrestrial reservoir are needed to match Delta Hg-200 observations. Marine Hg isotope measurements are needed to further expand the use of Hg isotopes in understanding global Hg cycling. (C) 2018 Elsevier Ltd. All rights reserved

    Climatic Controls on a Holocene Mercury Stable Isotope Sediment Record of Lake Titicaca

    Get PDF
    Mercury (Hg) records in sediment archives inform past patterns of Hg deposition and the anthropogenic contribution to global Hg cycling. Natural climate variations complicate the interpretation of past Hg accumulation rates (HgARs), warranting additional research. Here, we investigated Hg stable isotopes in a ca. 8k year-long sediment core of Lake Titicaca and combined isotopic data with organic biomarkers and biogeochemical measurements. A wet period in the early Holocene (8000-7300 BP) induced strong watershed erosion, leading to a high HgAR (20.2 ± 6.9 μg m -2 year -1 ), which exceeded the 20th century HgAR (8.4 ± 1.0 μg m -2 year -1 ). Geogenic Hg input dominated during the early Holocene ( f geog = 79%) and played a minor role during the mid- to late Holocene (4500 BP to present; f geog = 20%) when atmospheric Hg deposition dominated. Sediment Δ 200 Hg values and the absence of terrestrial lignin biomarkers suggest that direct lake uptake of atmospheric Hg(0), and subsequent algal scavenging of lake Hg, represented an important atmospheric deposition pathway (42%) during the mid- to late Holocene. During wet episodes of the late Holocene (2400 BP to present), atmospheric Hg(II) deposition was the dominant source of lake sediment Hg (up to 82%). Sediment Δ 199 Hg values suggest that photochemical reduction and re-emission of Hg(0) occurred from the lake surface. Hg stable isotopes show promise as proxies for understanding the history of Hg sources and transformations and help to disentangle anthropogenic and climate factors influencing HgAR observed in sediment archives

    Recent 210 Pb, 137 Cs and 241 Am accumulation in an ombrotrophic peatland from Amsterdam Island (Southern Indian Ocean)

    Get PDF
    Over the past 50 years, 210Pb, 137Cs and 241Am have been abundantly used in reconstructing recent sediment and peat chronologies. The study of global aerosol-climate interaction is also partially depending on our understanding of 222Rn-210Pb cycling, as radionuclides are useful aerosol tracers. However, in comparison with the Northern Hemisphere, few data are available for these radionuclides in the Southern Hemisphere, especially in the South Indian Ocean. A peat core was collected in an ombrotrophic peatland from the remote Amsterdam Island (AMS) and was analyzed for 210Pb, 137Cs and 241Am radionuclides using an underground ultra-low background gamma spectrometer. The 210Pb Constant Rate of Supply (CRS) model of peat accumulations is validated by peaks of artificial radionuclides (137Cs and 241Am) that are related to nuclear weapon tests. We compared the AMS 210Pb data with an updated 210Pb deposition database. The 210Pb flux of 98 ± 6 Bq·m−2·y−1 derived from the AMS core agrees with data from Madagascar and South Africa. The elevated flux observed at such a remote location may result from the enhanced 222Rn activity and frequent rainfall in AMS. This enhanced 222Rn activity itself may be explained by continental air masses passing over southern Africa and/or Madagascar. The 210Pb flux at AMS is higher than those derived from cores collected in coastal areas in Argentina and Chile, which are areas dominated by marine westerly winds with low 222Rn activities. We report a 137Cs inventory at AMS of 144 ± 13 Bq·m−2 (corrected to 1969). Our data thus contribute to the under-represented data coverage in the mid-latitudes of the Southern Hemisphere

    Geochemistry of CO2-Rich Gases Venting From Submarine Volcanism: The Case of Kolumbo (Hellenic Volcanic Arc, Greece)

    Get PDF
    Studies of submarine hydrothermal systems in Mediterranean Sea are limited to the southern Italian volcanism, while are totally missing in the Aegean. Here, we report on the geochemistry of high-temperature fluids (up to 220°C) venting at 500 m b.s.l. from the floor of Kolumbo submarine volcano (Hellenic Volcanic Arc, Greece), which is located 7 km northeast of Santorini Island. Despite the recent unrest at Santorini, Kolumbo submarine volcano is considered more active due to a higher seismicity. Rizzo et al. (2016) investigated the He-isotope composition of gases collected from seven chimneys and showed that are dominated by CO2 (>97%), with only a small air contamination. Here we provide more-complete chemical data and isotopic compositions of CO2 and CH4, and Hg(0) concentration. We show that the gases emitted from different vents are fractionated by the partial dissolution of CO2 in water. Fractionation is also evident in the C-isotope composition (δ13CCO2), which varies between -0.04 and 1.15‰. We modeled this process to reconstruct the chemistry and δ13CCO2 of intact magmatic gases before fractionation. We argue that the CO2 prior to CO2 dissolution in water had δ13C ∼-0.4‰ and CO2/3He ∼1 × 1010. This model reveals that the gases emitted from Kolumbo originate from a homogeneous mantle contaminated with CO2, probably due to decarbonation of subducting limestone, which is similar to other Mediterranean arc volcanoes (e.g., Stromboli, Italy). The isotopic signature of CH4 (δ13C ∼-18‰ and δD ∼-117‰) is within a range of values typically observed for hydrothermal gases (e.g., Panarea and Campi Flegrei, Italy), which is suggestive of mixing between thermogenic and abiotic CH4. We report that the concentrations of Hg(0) in Kolumbo fluids are particularly high (∼61 to 1300 ng m-3) when compared to land-based fumaroles located on Santorini and worldwide aerial volcanic emissions. This finding may represent further evidence for the high level of magmatic activity at Kolumbo. Based on the geo-indicators of temperature and pressure, we calculate that the magmatic gases equilibrate within the Kolumbo hydrothermal system at about 270°C and at a depth of ∼1 km b.s.l

    Observed in-plume gaseous elemental mercury depletion suggests significant mercury scavenging by volcanic aerosols

    Get PDF
    Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (& SIM;3-7 hours) volcanic plumes from Piton de la Fournaise on Reunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas-particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y(-1) (67-480 Mg y(-1)) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways
    corecore