127 research outputs found

    Early Endocardial Morphogenesis Requires Scl/Tal1

    Get PDF
    The primitive heart tube is composed of an outer myocardial and an inner endocardial layer that will give rise to the cardiac valves and septa. Specification and differentiation of these two cell layers are among the earliest events in heart development, but the embryonic origins and genetic regulation of early endocardial development remain largely undefined. We have analyzed early endocardial development in the zebrafish using time-lapse confocal microscopy and show that the endocardium seems to originate from a region in the lateral plate mesoderm that will give rise to hematopoietic cells of the primitive myeloid lineage. Endocardial precursors appear to rapidly migrate to the site of heart tube formation, where they arrive prior to the bilateral myocardial primordia. Analysis of a newly discovered zebrafish Scl/Tal1 mutant showed an additional and previously undescribed role of this transcription factor during the development of the endocardium. In Scl/Tal1 mutant embryos, endocardial precursors are specified, but migration is severely defective and endocardial cells aggregate at the ventricular pole of the heart. We further show that the initial fusion of the bilateral myocardial precursor populations occurs independently of the endocardium and tal1 function. Our results suggest early separation of the two components of the primitive heart tube and imply Scl/Tal1 as an indispensable component of the molecular hierarchy that controls endocardium morphogenesis

    αE-catenin-dependent mechanotransduction is essential for proper convergent extension in zebrafish

    Full text link
    Cadherin complexes mediate cell-cell adhesion and are crucial for embryonic development. Besides their structural function, cadherin complexes also transduce tension across the junction-actomyosin axis into proportional biochemical responses. Central to this mechanotransduction is the stretching of the cadherin-F-actin-linker α-catenin, which opens its central domain for binding to effectors such as vinculin. Mechanical unfolding of α-catenin leads to force-dependent reinforcement of cadherin-based junctions as studied in cell culture. The importance of cadherin mechanotransduction for embryonic development has not been studied yet. Here we used TALEN-mediated gene disruption to perturb endogenous αE-catenin in zebrafish development. Zygotic α-catenin mutants fail to maintain their epithelial barrier, resulting in tissue rupturing. We then specifically disrupted mechanotransduction, while maintaining cadherin adhesion, by expressing an αE-catenin construct in which the mechanosensitive domain was perturbed. Expression of either wild-type or mechano-defective α-catenin fully rescues barrier function in α-catenin mutants; however, expression of mechano-defective α-catenin also induces convergence and extension defects. Specifically, the polarization of cadherin-dependent, lamellipodia-driven cell migration of the lateral mesoderm was lost. These results indicate that cadherin mechanotransduction is crucial for proper zebrafish morphogenesis, and uncover one of the essential processes affected by its perturbatio

    Notch and Bmp signaling pathways act coordinately during the formation of the proepicardium.

    Get PDF
    The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.Nadia Mercader was funded by the Spanish Ministry of Economy and Competitiveness through grant BFU2014-56970-P (Plan Estatal de InvestigaciĂłn CientĂ­fica y TĂ©cnica y de InnovaciĂłn 2013-2016. Programa Estatal de I+D+i Orientada a los Retos de la Sociedad Retos InvestigaciĂłn: Proyectos I+D +i 2016, del Ministerio de EconomĂ­a competitividad e Industria), and cofunding by Fondo Europeo de Desarrollo Regional (FEDER). Nadia Mercader is also supported by the European Industrial Doctorate Program EID 722427. Nadia Mercader and Julien Vermot are supported by the Swiss National Science Foundation grant ANR-SNF 310030L_182575. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 708312 (MP) and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme: GA NÂș682938. Laura AndrĂ©s-Delgado was funded (2014-16) through the postdoctoral fellowship Ayudas Postdoctorales 2013. JosĂ© Luis de la Pompa was supported by grants SAF2016-78370-R, CB16/11/00399 (CIBER CV) and RD16/0011/0021 (TERCEL) from the Spanish Ministry of Science and Innovation. The CNIC is supported by the Ministry of Science and Innovation and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    The centriolar satellite protein Cfap53 facilitates formation of the zygotic microtubule organizing center in the zebrafish embryo

    Get PDF
    In embryos of most animal species, the zygotic centrosome is assembled by the centriole derived from the sperm cell and pericentriolar proteins present in the oocyte. This zygotic centrosome acts as a microtubule organizing center (MTOC) to assemble the sperm aster and mitotic spindle. As MTOC formation has been studied mainly in adult cells, very little is known about the formation of the zygotic MTOC. Here, we show that zebrafish (Danio rerio) embryos lacking either maternal or paternal Cfap53, a centriolar satellite protein, arrest during the first cell cycle. Although Cfap53 is dispensable for sperm aster function, it aids proper formation of the mitotic spindle. During cell division, Cfap53 colocalizes with Îł-tubulin and with other centrosomal and centriolar satellite proteins at the MTOC. Furthermore, we find that Îł-tubulin localization at the MTOC is impaired in the absence of Cfap53. Based on these results, we propose a model in which Cfap53 deposited in the oocyte and the sperm participates in the organization of the zygotic MTOC to allow mitotic spindle formation

    Biallelic variants in FLII cause pediatric cardiomyopathy by disrupting cardiomyocyte cell adhesion and myofibril organization

    Get PDF
    Pediatric cardiomyopathy (CM) represents a group of rare, severe disorders that affect the myocardium. To date, the etiology and mechanisms underlying pediatric CM are incompletely understood, hampering accurate diagnosis and individualized therapy development. Here, we identified biallelic variants in the highly conserved flightless-I (FLII) gene in 3 families with idiopathic, early-onset dilated CM. We demonstrated that patient-specific FLII variants, when brought into the zebrafish genome using CRISPR/Cas9 genome editing, resulted in the manifestation of key aspects of morphological and functional abnormalities of the heart, as observed in our patients. Importantly, using these genetic animal models, complemented with in-depth loss-of-function studies, we provided insights into the function of Flii during ventricular chamber morphogenesis in vivo, including myofibril organization and cardiomyocyte cell adhesion, as well as trabeculation. In addition, we identified Flii function to be important for the regulation of Notch and Hippo signaling, crucial pathways associated with cardiac morphogenesis and function. Taken together, our data provide experimental evidence for a role for FLII in the pathogenesis of pediatric CM and report biallelic variants as a genetic cause of pediatric CM.</p

    Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish

    Get PDF
    In vertebrates, left-right (LR) axis specification is determined by a ciliated structure in the posterior region of the embryo. Fluid flow in this ciliated structure is responsible for the induction of unilateral left-sided Nodal activity in the lateral plate mesoderm, which in turn regulates organ laterality. Bmp signalling activity has been implied in repressing Nodal expression on the right side, however its mechanism of action has been controversial. In a forward genetic screen for mutations that affect LR patterning, we identified the zebrafish linkspoot (lin) mutant, characterized by cardiac laterality and mild dorsoventral patterning defects. Mapping of the lin mutation revealed an inactivating missense mutation in the Bmp receptor 1aa (bmpr1aa) gene. Embryos with a mutation in lin/bmpr1aa and a novel mutation in its paralogue, bmpr1ab, displayed a variety of dorsoventral and LR patterning defects with increasing severity corresponding with a decrease in bmpr1a dosage. In Bmpr1a-deficient embryos we observed bilateral expression of the Nodal-related gene, spaw, coupled with reduced expression of the Nodal-antagonist lefty1 in the midline. Using genetic models to induce or repress Bmp activity in combination with Nodal inhibition or activation, we found that Bmp and Nodal regulate lefty1 expression in the midline independently of each other. Furthermore, we observed that the regulation of lefty1 by Bmp signalling is required for its observed downregulation of Nodal activity in the LPM providing a novel explanation for this phenomenon. From these results we propose a two-step model in which Bmp regulates LR patterning. Prior to the onset of nodal flow and Nodal activation, Bmp is required to induce lefty1 expression in the midline. When nodal flow has been established and Nodal activity is apparent, both Nodal and Bmp independently are required for lefty1 expression to assure unilateral Nodal activation and correct LR patterning

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91: 279–288

    No full text
    Abstract Over the last decade, the zebrafish has entered the field of cardiovascular research as a new model organism. This is largely due to a number of highly successful small-and large-scale forward genetic screens, which have led to the identification of zebrafish mutants with cardiovascular defects. Genetic mapping and identification of the affected genes have resulted in novel insights into the molecular regulation of vertebrate cardiac development. More recently, the zebrafish has become an attractive model to study the effect of genetic variations identified in patients with cardiovascular defects by candidate gene or whole-genome-association studies. Thanks to an almost entirely sequenced genome and high conservation of gene function compared with humans, the zebrafish has proved highly informative to express and study human disease-related gene variants, providing novel insights into human cardiovascular disease mechanisms, and highlighting the suitability of the zebrafish as an excellent model to study human cardiovascular diseases. In this review, I discuss recent discoveries in the field of cardiac development and specific cases in which the zebrafish has been used to model human congenital and acquired cardiac diseases. -
    • 

    corecore