2 research outputs found
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%–61%median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize ?-glucans rather than ?-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease
Proximity Staining using Enzymatic Protein Tagging in Diplomonads
The diplomonads are a group of understudied eukaryotic flagellates whose most prominent member is the human pathogen Giardia intestinalis. Methods commonly used in other eukaryotic model systems often require special optimization in diplomonads due to the highly derived character of their cell biology. We have optimized a proximity labeling protocol using pea ascorbate peroxidase (APEX) as a reporter for transmission electron microscopy (TEM), to enable study of ultrastructural cellular details in diplomonads. Currently available TEM-compatible tags requires light-induced activation (1, 2) or are inactive in many cellular compartments (3) while ascorbate peroxidase has not been shown to have those limitations. Here we have optimized the in vivo activity of two versions of pea ascorbate peroxidase (APXW41F and APEX) using the diplomonad fish parasite Spironucleus salmonicida, a relative of G. intestinalis. We exploited the well-known peroxidase substrates, Amplex UltraRed and 3,3’-diaminobenzidine (DAB), to validate the activity of the two tags and argue that APEX is the most stable version to use in Spironucleus salmonicida. Next, we fused APEX to proteins with established localization to evaluate the activity of APEX in different cellular compartments of the diplomonad cell and used Amplex UltraRed as well as antibodies along with super-resolution microscopy to confirm the protein-APEX localization. The ultrastructural details of protein-APEX fusions were determined by TEM and we observed marker activity in all cellular compartments tested when using the DAB substrate. Finally, we show that the optimized conditions established for S. salmonicida can be used in the related diplomonad G. intestinalis