82 research outputs found

    Perceived Risk of Predation Affects Reproductive Life - History Traits in Gambusia holbrooki, but Not in Heterandria formosa

    Get PDF
    Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects) are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk) and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection). Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii) but not the matrotroph (Heterandria formosa). Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14%) of stillbirths in predator-exposed treatments compared to controls (2%). To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap), or both decrease the sensitivity of mothers to environmental fluctuation in resource (food) and stress (predation risk) levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes

    Vertical movements of shortfin mako sharks Isurus oxyrinchus in the western North Atlantic Ocean are strongly influenced by temperature

    Get PDF
    Although shortfin mako sharks Isurus oxyrinchus are regularly encountered in pelagic fisheries, limited information is available on their vertical distribution and is primarily restricted to cooler areas of their geographic range. We investigated the vertical movements of mako sharks across differing temperature regimes within the western North Atlantic by tagging 8 individuals with pop-up satellite archival tags off the northeastern United States and the Yucatan Peninsula, Mexico. Depth and temperature records across 587 d showed vertical movements strongly associated with ocean temperature. Temperatures150 m compared to only 1% in the coldest water columns. The sharks showed diel diving behavior, with deeper dives occurring primarily during the daytime (maximum depth: 866 m). Overall, sharks experienced temperatures between 5.2 and 31.1°C. When the opportunity was available, sharks spent considerable time in waters ranging from 22 to 27°C, indicating underestimation of the previously reported upper limit of the mako sharks’ preferred temperature. The preference for higher temperatures does not support endothermy as an adaption for niche expansion in mako sharks. The strong influence of thermal habitat on movement behavior suggests potentially strong impacts of rising ocean temperatures on the ecology of this highly migratory top predator

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    Seasonal Movements and Habitat Use of Juvenile Smooth Hammerhead Sharks in the Western North Atlantic Ocean and Significance for Management

    Get PDF
    Upper trophic level predators dramatically impacted by fisheries include the large-bodied hammerhead sharks, which have become species of conservation concern worldwide. Implementing spatial management for conservation of hammerhead populations requires knowledge of temporal distribution patterns and habitat use, identification of essential habitat for protection, and quantification of interactions with human activities. There is little such information for the smooth hammerhead shark, Sphyrna zygaena. We used fin-mounted satellite tags to examine the movements and habitat use of juvenile smooth hammerheads, a demographic segment particularly threatened by exploitation. Six sharks were tagged off the US mid-Atlantic and tracked for 49–441 days (mean 187 ± 136 days). Sharks consistently showed area-restricted movements within a summer core area in waters of the New York Bight and a winter core area off Cape Hatteras, North Carolina, with directed movements between them in autumn. There was high overlap of shark winter core area use and the Mid-Atlantic Shark Area (MASA) – a 7 month per year, bottom-longline fishery closure – indicating that this area closure offers seasonal reduction in fishing pressure for this species. Based on timing of shark movements and the MASA closure, protection for juvenile smooth hammerheads may be increased by beginning the closure period 1 month earlier than currently scheduled. Generalized additive mixed models revealed that area-restricted movements of sharks in their summer and winter core areas coincided with high primary productivity, and elevated sea surface temperature. Consistency in use of summer and winter core areas suggests that the coastal waters of the New York Bight and Cape Hatteras, North Carolina could be considered for Essential Fish Habitat designation for this species. This study reveals the first high resolution movements and habitat use for smooth hammerheads in the western North Atlantic to inform management planning for this population

    Satellite Telemetry Reveals Higher Fishing Mortality Rates Than Previously Estimated, Suggesting Overfishing of an Apex Marine Predator

    Get PDF
    Overfishing is a primary cause of population declines for many shark species of conservation concern. However, means of obtaining information on fishery interactions and mortality, necessary for the development of successful conservation strategies, are often fisheries-dependent and of questionable quality for many species of commercially exploited pelagic sharks. We used satellite telemetry as a fisheries-independent tool to document fisheries interactions, and quantify fishing mortality of the highly migratory shortfin mako shark (Isurus oxyrinchus) in the western North Atlantic Ocean. Forty satellite-tagged shortfin mako sharks tracked over 3 years entered the Exclusive Economic Zones of 19 countries and were harvested in fisheries of five countries, with 30% of tagged sharks harvested. Our tagging-derived estimates of instantaneous fishing mortality rates (F = 0.19–0.56) were 10-fold higher than previous estimates from fisheries-dependent data (approx. 0.015–0.024), suggesting data used in stock assessments may considerably underestimate fishing mortality. Additionally, our estimates of F were greater than those associated with maximum sustainable yield, suggesting a state of overfishing. This information has direct application to evaluations of stock status and for effective management of populations, and thus satellite tagging studies have potential to provide more accurate estimates of fishing mortality and survival than traditional fisheries-dependent methodology

    Comparative Use of a Caribbean Mesophotic Coral Ecosystem and Association with Fish Spawning Aggregations by Three Species of Shark

    Get PDF
    Understanding of species interactions within mesophotic coral ecosystems (MCEs; ~ 30–150 m) lags well behind that for shallow coral reefs. MCEs are often sites of fish spawning aggregations (FSAs) for a variety of species, including many groupers. Such reproductive fish aggregations represent temporal concentrations of potential prey that may be drivers of habitat use by predatory species, including sharks. We investigated movements of three species of sharks within a MCE and in relation to FSAs located on the shelf edge south of St. Thomas, United States Virgin Islands. Movements of 17 tiger (Galeocerdo cuvier), seven lemon (Negaprion brevirostris), and six Caribbean reef (Carcharhinus perezi) sharks tagged with acoustic transmitters were monitored within the MCE using an array of acoustic receivers spanning an area of 1,060 km2 over a five year period. Receivers were concentrated around prominent grouper FSAs to monitor movements of sharks in relation to these temporally transient aggregations. Over 130,000 detections of telemetered sharks were recorded, with four sharks tracked in excess of 3 years. All three shark species were present within the MCE over long periods of time and detected frequently at FSAs, but patterns of MCE use and orientation towards FSAs varied both spatially and temporally among species. Lemon sharks moved over a large expanse of the MCE, but concentrated their activities around FSAs during grouper spawning and were present within the MCE significantly more during grouper spawning season. Caribbean reef sharks were present within a restricted portion of the MCE for prolonged periods of time, but were also absent for long periods. Tiger sharks were detected throughout the extent of the acoustic array, with the MCE representing only portion of their habitat use, although a high degree of individual variation was observed. Our findings indicate that although patterns of use varied, all three species of sharks repeatedly utilized the MCE and as upper trophic level predators they are likely involved in a range of interactions with other members of MCEs

    Intraspecific variation in vertical habitat use by tiger sharks (\u3cem\u3eGaleocerdo cuvier\u3c/em\u3e) in the western North Atlantic

    Get PDF
    Tiger sharks (Galeocerdo cuvier) are a wide ranging, potentially keystone predator species that display a variety of horizontal movement patterns, making use of coastal and pelagic waters. Far less, however, is known about their vertical movements and use of the water column. We used pop‐up satellite archival tags with two data sampling rates (high rate and standard rate tags) to investigate the vertical habitat use and diving behavior of tiger sharks tagged on the Puerto Rico–Virgin Islands platform and off Bermuda between 2008 and 2009. Useable data were received from nine of 14 sharks tagged, tracked over a total of 529 days. Sharks spent the majority of their time making yo‐yo dives within the upper 50 m of the water column and considerable time within the upper 5 m of the water column. As a result, sharks typically occupied a narrow daily temperature range (~2°C). Dives to greater than 200 m were common, and all sharks made dives to at least 250 m, with one shark reaching a depth of 828 m. Despite some similarities among individuals, a great deal of intraspecific variability in vertical habit use was observed. Four distinct depth distributions that were not related to tagging location, horizontal movements, sex, or size were detected. In addition, similar depth distributions did not necessitate similar dive patterns among sharks. Recognition of intraspecific variability in habitat use of top predators can be crucial for effective management of these species and for understanding their influence on ecosystem dynamics

    De schadelijke werking van het zaad van de Ricinus communis op de gezondheid : een bedrijfsgeneeskundig onderzoek bij havenwerkers te Rotterdam

    Get PDF
    Large predators often play important roles in structuring marine communities. To understand the role that these predators play in ecosystems, it is crucial to have knowledge of their interactions and the degree to which their trophic roles are complementary or redundant among species. We used stable isotope analysis to examine the isotopic niche overlap of dolphins Tursiops cf. aduncus, large sharks (\u3e1.5 m total length), and smaller elasmobranchs (sharks and batoids) in the relatively pristine seagrass community of Shark Bay, Australia. Dolphins and large sharks differed in their mean isotopic values for δ13C and δ15N, and each group occupied a relatively unique area in isotopic niche space. The standard ellipse areas (SEAc; based on bivariate standard deviations) of dolphins, large sharks, small sharks, and rays did not overlap. Tiger sharks Galeocerdo cuvier had the highest δ15N values, although the mean δ13C and δ15N values of pigeye sharks Carcharhinus amboinensis were similar. Other large sharks (e.g. sicklefin lemon sharksNegaprion acutidens and sandbar sharks Carcharhinus plumbeus) and dolphins appeared to feed at slightly lower trophic levels than tiger sharks. In this seagrass-dominated ecosystem, seagrass-derived carbon appears to be more important for elasmobranchs than it is for dolphins. Habitat use patterns did not correlate well with the sources of productivity supporting diets, suggesting that habitat use patterns may not necessarily be reflective of the resource pools supporting a population and highlights the importance of detailed datasets on trophic interactions for elucidating the ecological roles of predators

    A global perspective on the trophic geography of sharks

    Get PDF
    Sharks are a diverse group of mobile predators that forage across varied spatial scales and have the potential to influence food web dynamics. The ecological consequences of recent declines in shark biomass may extend across broader geographic ranges if shark taxa display common behavioural traits. By tracking the original site of photosynthetic fixation of carbon atoms that were ultimately assimilated into muscle tissues of 5,394 sharks from 114 species, we identify globally consistent biogeographic traits in trophic interactions between sharks found in different habitats. We show that populations of shelf-dwelling sharks derive a substantial proportion of their carbon from regional pelagic sources, but contain individuals that forage within additional isotopically diverse local food webs, such as those supported by terrestrial plant sources, benthic production and macrophytes. In contrast, oceanic sharks seem to use carbon derived from between 30° and 50° of latitude. Global-scale compilations of stable isotope data combined with biogeochemical modelling generate hypotheses regarding animal behaviours that can be tested with other methodological approaches.This research was conducted as part of C.S.B.’s Ph.D dissertation, which was funded by the University of Southampton and NERC (NE/L50161X/1), and through a NERC Grant-in-Kind from the Life Sciences Mass Spectrometry Facility (LSMSF; EK267-03/16). We thank A. Bates, D. Sims, F. Neat, R. McGill and J. Newton for their analytical contributions and comments on the manuscripts.Peer reviewe

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management
    corecore