198 research outputs found
The age of the directly imaged planet host star k Andromedae determined from interferometric observations
κ Andromedae, an early-type star that hosts a directly imaged low-mass companion, is expected to be oblate due to its rapid rotational velocity (v sin i = ~162 km s⁻¹). We observed the star with the CHARA Array's optical beam combiner, PAVO, measuring its size at multiple orientations and determining its oblateness. The interferometric measurements, combined with photometry and this v sin i value are used to constrain an oblate star model that yields the fundamental properties of the star and finds a rotation speed that is ~85% of the critical rate and a low inclination of ~30°. Three modeled properties (the average radius, bolometric luminosity, and equatorial velocity) are compared to MESA evolution models to determine an age and mass for the star. In doing so, we determine an age for the system of 47_₄₀⁺²⁷ Myr. Based on this age and previous measurements of the companion's temperature, the BHAC15 evolution models imply a mass for the companion of 22_₉⁺⁸ MJ.This work is based upon observations
obtained with the Georgia State University Center for High
Angular Resolution Astronomy Array at Mount Wilson
Observatory. The CHARA Array is supported by the National
Science Foundation under grants AST-1211929 and AST-
1411654. Institutional support has been provided from the
GSU College of Arts and Sciences and the GSU Office of the
Vice President for Research and Economic Development. J.J.
and R.J.W. acknowledge support from NSF AAG grants
1009643 and 1517762
The Ages of A-Stars I: Interferometric Observations and Age Estimates for Stars in the Ursa Major Moving Group
We have observed and spatially resolved a set of seven A-type stars in the
nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners
on the CHARA Array. At least four of these stars have large rotational
velocities ( 170 ) and are expected to
be oblate. These interferometric measurements, the stars' observed photometric
energy distributions, and values are used to computationally
construct model oblate stars from which stellar properties (inclination,
rotational velocity, and the radius and effective temperature as a function of
latitude, etc.) are determined. The results are compared with MESA stellar
evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The
value of this new technique is that it enables the estimation of the
fundamental properties of rapidly rotating stars without the need to fully
image the star. It can thus be applied to stars with sizes comparable to the
interferometric resolution limit as opposed to those that are several times
larger than the limit. Under the assumption of coevality, the spread in ages
can be used as a test of both the prescription presented here and the MESA
evolutionary code for rapidly rotating stars. With our validated technique, we
combine these age estimates and determine the age of the moving group to be 414
23 Myr, which is consistent with, but much more precise than previous
estimates.Comment: Accepted by Ap
Spectroscopy, MOST Photometry, and Interferometry of MWC 314: Is it an LBV or an interacting binary?
MWC 314 is a bright candidate luminous blue variable that resides in a fairly
close binary system, with an orbital period of 60.7530.003 d. We observed
MWC 314 with a combination of optical spectroscopy, broad-band ground- and
space-based photometry, as well as with long baseline, near-infrared
interferometry. We have revised the single-lined spectroscopic orbit and
explored the photometric variability. The orbital light curve displays two
minima each orbit that can be partially explained in terms of the tidal
distortion of the primary that occurs around the time of periastron. The
emission lines in the system are often double-peaked and stationary in their
kinematics, indicative of a circumbinary disc. We find that the stellar wind or
circumbinary disc is partially resolved in the K\prime-band with the longest
baselines of the CHARA Array. From this analysis, we provide a simple,
qualitative model in an attempt to explain the observations. From the
assumption of Roche Lobe overflow and tidal synchronisation at periastron, we
estimate the component masses to be M1 M and M2
M, which indicates a mass of the LBV that is extremely low. In addition
to the orbital modulation, we discovered two pulsational modes with the MOST
satellite. These modes are easily supported by a low-mass hydrogen-poor star,
but cannot be easily supported by a star with the parameters of an LBV. The
combination of these results provides evidence that the primary star was likely
never a normal LBV, but rather is the product of binary interactions. As such,
this system presents opportunities for studying mass-transfer and binary
evolution with many observational techniques.Comment: 26 pages, 7 figures, 5 tables, 2 appendices with 7 additional tables
and 2 additional figures. Accepted for publication in MNRA
Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations
Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR_(J)I_(J)JHK), Cousins (R_(C)I_(C)), Kron (R_(K)I_(K)), Sloan (griz), and WISE (W_(3)W_(4)) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T_eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis
Stellar Diameters and Temperatures II. Main Sequence K & M Stars
We present interferometric diameter measurements of 21 K- and M- dwarfs made
with the CHARA Array. This sample is enhanced by literature radii measurements
to form a data set of 33 K-M dwarfs with diameters measured to better than 5%.
For all 33 stars, we compute absolute luminosities, linear radii, and effective
temperatures (Teff). We develop empirical relations for \simK0 to M4 main-
sequence stars between the stellar Teff, radius, and luminosity to broad-band
color indices and metallicity. These relations are valid for metallicities
between [Fe/H] = -0.5 and +0.1 dex, and are accurate to ~2%, ~5%, and ~4% for
Teff, radius, and luminosity, respectively. Our results show that it is
necessary to use metallicity dependent transformations to convert colors into
stellar Teffs, radii, and luminosities. We find no sensitivity to metallicity
on relations between global stellar properties, e.g., Teff-radius and
Teff-luminosity. Robust examinations of single star Teffs and radii compared to
evolutionary model predictions on the luminosity-Teff and luminosity-radius
planes reveals that models overestimate the Teffs of stars with Teff < 5000 K
by ~3%, and underestimate the radii of stars with radii < 0.7 R\odot by ~5%.
These conclusions additionally suggest that the models overestimate the effects
that the stellar metallicity may have on the astrophysical properties of an
object. By comparing the interferometrically measured radii for single stars to
those of eclipsing binaries, we find that single and binary star radii are
consistent. However, the literature Teffs for binary stars are systematically
lower compared to Teffs of single stars by ~ 200 to 300 K. Lastly, we present a
empirically determined HR diagram for a total of 74 nearby, main-sequence, A-
to M-type stars, and define regions of habitability for the potential existence
of sub-stellar mass companions in each system. [abridged]Comment: 73 pages, 12 Tables, 18 Figures. Accepted for publication in The
Astrophysical Journa
Erratum: “stellar diameters and temperatures. II. main-sequence K- and M-stars” (2012, ApJ, 757, 112)
Published versio
- …