904 research outputs found

    Modeling of solvent flow effects in enzyme catalysis under physiological conditions

    Full text link
    A stochastic model for the dynamics of enzymatic catalysis in explicit, effective solvents under physiological conditions is presented. Analytically-computed first passage time densities of a diffusing particle in a spherical shell with absorbing boundaries are combined with densities obtained from explicit simulation to obtain the overall probability density for the total reaction cycle time of the enzymatic system. The method is used to investigate the catalytic transfer of a phosphoryl group in a phosphoglycerate kinase-ADP-bis phosphoglycerate system, one of the steps of glycolysis. The direct simulation of the enzyme-substrate binding and reaction is carried out using an elastic network model for the protein, and the solvent motions are described by multiparticle collision dynamics, which incorporates hydrodynamic flow effects. Systems where solvent-enzyme coupling occurs through explicit intermolecular interactions, as well as systems where this coupling is taken into account by including the protein and substrate in the multiparticle collision step, are investigated and compared with simulations where hydrodynamic coupling is absent. It is demonstrated that the flow of solvent particles around the enzyme facilitates the large-scale hinge motion of the enzyme with bound substrates, and has a significant impact on the shape of the probability densities and average time scales of substrate binding for substrates near the enzyme, the closure of the enzyme after binding, and the overall time of completion of the cycle.Comment: 15 pages in double column forma

    The Effect of Quercetin on Bone Turnover Markers, Inflammatory Markers, and Bone Mineral Density in Postmenopausal Women: A Double-Blind Placebo-Controlled Investigation

    Get PDF
    Maintaining optimal bone health prevents major bone disorders (e.g., osteoporosis) and prolongs longevity. Quercetin is a plant-based flavonoid that is suggested to have anti-inflammatory effects and may improve bone health. PURPOSE: To investigate the effects of quercetin supplementation over 90-days on prominent bone turnover markers (BTMs), inflammatory markers, bone mineral density (BMD), body composition, and physical functioning in postmenopausal women. METHODS: Thirty-three healthy, nonosteoporotic, postmenopausal women (59.2±7.0 years) participated in a double-blind, placebo-controlled investigation. Participants were randomized into one of two supplement groups: 1) 500 mg of quercetin (QUE) once daily or 2) 500 mg of methylcellulose (placebo; PLB) once daily. Pre- and post-testing visits included assessments of BTMs (i.e., osteocalcin [OC], procollagen type-I N-terminal propeptide [PINP], and type-I collagen cross-linked C-terminal telopeptide [CTX]), inflammatory markers (i.e., interleukin [IL]-6, tumor necrosis factor-alpha [TNF-a], and C-reactive protein [CRP]), BMD measurements, body composition measurements (i.e., body fat percentage), and physical function. RESULTS: The QUE group increased OC (p=0.016; d=0.89), PINP (p=0.030; d=0.64), and CTX (p=0.023; d=0.91) levels and decreased IL-6 (p=0.045; d=0.73) and TNF-a (p=0.021; d=0.90) levels compared to PLB. CRP (p=0.448; d=0.34), BMD, body composition, and physical function remained unchanged. CONCLUSION: The results indicate that QUE may maintain optimal bone health by mediating bone formation and decreasing pro-inflammatory cytokines

    Gut microbiota induce IGF-1 and promote bone formation and growth

    Get PDF
    New interventions are needed to improve bone health and reduce the risk for osteoporosis and fracture. Dysbiosis is increasingly linked to metabolic abnormalities, although the effect of the microbiota on skeletal health is poorly understood. Previous studies suggest microbiota are detrimental to bone by increasing resorption. In this report, we show that the gut resident microbiota promote bone formation, as well as resorption, with long-term exposure to microbiota resulting in net skeletal growth. Microbiota induce the hormone insulin-like growth factor 1 (IGF-1), which promotes bone growth and remodeling. Short-chain fatty acids (SCFAs), produced when microbiota ferment fiber, also induce IGF-1, suggesting a mechanism by which microbiota affect bone health. Manipulating the microbiome or its metabolites may afford opportunities to optimize bone health and growth

    Sept8/SEPTIN8 involvement in cellular structure and kidney damage is identified by genetic mapping and a novel human tubule hypoxic model.

    Get PDF
    Chronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk

    The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men

    Get PDF
    INTRODUCTION: We recently described the sulfur microbial diet, a pattern of intake associated with increased gut sulfur-metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk differed by CRC molecular subtypes or presence of intratumoral microbes involved in CRC pathogenesis (Fusobacterium nucleatum and Bifidobacterium spp.). METHODS: We performed Cox proportional hazards modeling to examine the association between the sulfur microbial diet and incidence of overall and distal CRC by molecular and microbial subtype in the Health Professionals Follow-Up Study (1986-2012). RESULTS: We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had available tissue data. After accounting for multiple hypothesis testing, the relationship between the sulfur microbial diet and CRC incidence did not differ by subtype. However, there was a suggestion of an association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99-1.74, Ptrend = 0.07, Pheterogeneity = 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet with distal CRC seemed to differ by the presence of intratumoral Bifidobacterium spp. with an adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.65 (95% confidence interval: 1.14-2.39, Ptrend = 0.01, Pheterogeneity = 0.03) for Bifidobacterium-negative distal CRC. We observed no apparent heterogeneity by other tested molecular markers. DISCUSSION: Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the role of gut microbial sulfur metabolism and CRC
    corecore