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The Sulfur Microbial Diet and Risk of Colorectal Cancer
by Molecular Subtypes and Intratumoral Microbial
Species in Adult Men
Daniel R. Sikavi, MD1,2, Long H. Nguyen, MD, MS2,3,4, Koichiro Haruki, MD, PhD5, Tomotaka Ugai, MD, PhD5,6, Wenjie Ma, ScD2,3,4,
Dong D. Wang, ScD4,7, Kelsey N. Thompson, PhD4,8, Yan Yan, PhD4, Tobyn Branck, MS4, Jeremy E. Wilkinson, PhD4,
Naohiko Akimoto, MD, PhD5, Rong Zhong, PhD5, Mai Chan Lau, PhD5, Kosuke Mima, MD, PhD5, Keisuke Kosumi, MD, PhD5,
Teppei Morikawa, MD, PhD5, Eric B. Rimm, ScD7, Wendy S. Garrett, MD, PhD8,9, Jacques Izard, PhD10,11, Yin Cao, ScD, MPH12,13,
Mingyang Song, MBBS, ScD2,3,6,7, Curtis Huttenhower, PhD4,8,14, Shuji Ogino, MS, MD, PhD5,6,8,15 and Andrew T. Chan, MD, MPH2,3,8,14

INTRODUCTION: We recently described the sulfurmicrobial diet, a pattern of intake associated with increased gut sulfur-

metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk

differed by CRCmolecular subtypes or presence of intratumoralmicrobes involved in CRC pathogenesis

(Fusobacterium nucleatum and Bifidobacterium spp.).

METHODS: We performed Cox proportional hazards modeling to examine the association between the sulfur

microbial diet and incidence of overall and distal CRC bymolecular andmicrobial subtype in theHealth

Professionals Follow-Up Study (1986–2012).

RESULTS: We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had

available tissue data. After accounting for multiple hypothesis testing, the relationship between the

sulfurmicrobial diet andCRC incidence did not differ by subtype. However, there was a suggestion of an

association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for

highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99–1.74,

Ptrend 5 0.07, Pheterogeneity 5 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet

with distal CRC seemed to differ by the presence of intratumoralBifidobacterium spp. with an adjusted

hazard ratio for highest vs lowest tertile of sulfurmicrobial diet scores of 1.65 (95%confidence interval:

1.14–2.39, Ptrend5 0.01, Pheterogeneity5 0.03) for Bifidobacterium-negative distal CRC. We observed

no apparent heterogeneity by other tested molecular markers.

DISCUSSION: Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and

Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the

role of gut microbial sulfur metabolism and CRC.

SUPPLEMENTARY MATERIAL accompanies this paper at http://links.lww.com/CTG/A652.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common and second
most lethal cancer globally (1). A modifiable lifestyle is a major
risk factor in the development of sporadic CRC (2–5). The link
between dietary intake and CRC risk has been well-documented
(6–8). However, the degree to which gut microbial communities
mediate the relationship between diet and carcinogenesis is less
well-understood (9,10). Specifically, sulfur-metabolizing bacteria
have been implicated in CRC etiopathogenesis (11–16). This
phylogenetically diverse group of microbes can convert dietary
sulfur into hydrogen sulfide (H2S) gas (17). Data from in vitro and
animal studies have linked H2S in the colorectum to several
carcinogenic processes, including direct DNA damage (18–20),
promotion of a proinflammatory phenotype (17,21), disruption
of the protective colonic mucus bilayer (22), and inappropriate
cell cycle progression (11). We recently identified a gut
microbiome–derived dietary pattern—the sulfur microbial
diet—associated with a greater abundance of sulfur-metabolizing
bacteria in healthy adults. This dietary pattern was characterized
by a higher intake of processed meats and low-calorie drinks and
decreased intake of vegetables and legumes, foods previously
linked to risk of CRC (23). Long-term adherence to this pattern of
intake was subsequently associatedwith an increased incidence of
distal colon and rectal cancers (23).

Separately, several studies have previously described molecular
and intratumoralmicrobial heterogeneityofCRCbyboth anatomic
subsite (24–26) and dietary intake (27–33)—i.e., different dietary risk
factorsmaygive rise toheterogenous tumorswith respect tomolecular
subtypes, the intratumoralmicrobes they harbor, and even where in
the colorectum these neoplastic lesions tend to occur. In par-
ticular, several studies have shown that the association between
dietary risk factors and CRC may differ by Kirsten rat sarcoma
(KRAS), v-raf murine sarcoma viral oncogene homolog B1
(BRAF), phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha (PIK3CA), long-interspersed nucleotide
element-1 (LINE-1) methylation, microsatellite instability
(MSI), CpG island methylator phenotype (CIMP), prostaglan-
din synthase 2 (PTGS2) (cyclooxygenase-2), and CTNNB1
(beta-catenin) status (27,28,31,34–40). Similarly, previous work
suggests that diet can alter the abundance of 2 important mi-
crobes implicated in CRC pathogenesis, Fusobacterium nucle-
atum and Bifidobacterium spp. (41–43).

We hypothesized that the association between a diet associ-
atedwith a greater abundance of sulfur-metabolizing bacteria and
distal CRC is driven by particular molecular CRC subtypes or
relative enrichment or depletion of intratumoral CRC-associated
microbes (44,45). The study of these molecular and microbial
CRC subtypesmay offer amore complete and precisemechanistic
understanding of the relationship between dietary intake, the gut
microbiome, and colorectal tumorigenesis. Thus, in a large US
prospective cohort, we examined the relationship between the
sulfur microbial diet and incidence of CRC according to several
molecular tumor markers and intratumoral microbes previously
linked to CRC.

METHODS

Study population

We enrolled participants from the Health Professionals Follow-
up Study (HPFS). The HPFS is an ongoing prospective cohort
study of 51,529 US male podiatrists, dentists, osteopathic

physicians, veterinarians, pharmacists, and optometrists. Partic-
ipants were aged 40–75 years at enrollment in 1986 and followed
with biennial questionnaires on medical, lifestyle, and other
health-related information. Dietary intake was assessed every 4
years through validated semiquantitative food frequency ques-
tionnaires. Follow-up among eligible subjects exceeds 90% (46).
The cohort has previously been described in detail (46). The study
protocol was approved by the Institutional Review Boards of the
Brigham and Women’s Hospital, the Harvard T.H. Chan School
of Public Health, and those of participating registries as required.

Assessment of the sulfur microbial diet

Self-reported dietary intake was assessed through semi-
quantitative food frequency questionnaires administered every 4
years from 1986 to 2010. These questionnaires have been vali-
dated and described in detail (47). The food frequency ques-
tionnaire includes 131 food items with specified serving sizes, of
which participants indicated their average frequency of con-
sumption over the past year. Intake frequency ranged from never
or less than once per month to 61 times per day and was con-
verted to servings/d. Total caloric intake was calculated by sum-
ming energy intake across all food groups.

Using a previously describedmethod, we linked dietary intake
of food and the log-transformed relative abundance of 43 putative
sulfur-metabolizing species (see Table 1, Supplementary Digital
Content 1, http://links.lww.com/CTG/A652) (23). Briefly, the
sulfur microbial diet was derived using long-term dietary intake
and longitudinal stool metagenomes from 307 men in the Men’s
Lifestyle Validation Study, a nested developmental cohort within
the HPFS (;0.6% of the original HPFS population). Reduced
rank regression and stepwise linear regression analyses were used
to identify food groups associated with increased or decreased
relative abundance of 43 sulfur-metabolizing bacterial species by
summing the intake of foods retained from the final stepwise
linear regression analyses weighted by their regression coeffi-
cients. The component food groups were processed meat, liquor,
and low-calorie drinks (each positively associated with the
abundance of sulfur-metabolizing bacteria), as well as beer, fruit
juice, legumes, mixed (other) vegetables, and sweets/desserts
(each negatively associated). We found that the sulfur microbial
diet explained 2% of variation in Bray-Curtis distances (R2),
comparable in magnitude with recent antibiotic use (1.5%).

To represent long-term usual dietary habits (48), sulfur mi-
crobial diet scores were updated at each follow-up cycle using the
cumulative average method with each score averaged across all
assessments before the current questionnaire. Dietary scores were
then categorized into tertiles. The food-based sulfur microbial
diet score represents a data-driven prediction for how much
sulfur-metabolizing bacteria an individual may harbor over the
long term. Notably, although the sulfur microbial diet shared
some foods with dietary patterns previously linked to CRC (e.g.,
the Western diet) (27,49–51), sulfur microbial diet scores were
not associated with Western dietary scores, which suggests that
the sulfur microbial diet may capture a novel signal in the
established diet-CRC relationship.

Assessment of CRC cases and subtype

Cases of incident CRC were reported by participants on biennial
questionnaires or were identified by next of kin, postal authori-
ties, the National Death Index, or death certificates. Study phy-
sicians blinded to risk factor status reviewed relevant records to
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confirm cases and extract data on anatomic site, histology, and
stage of the tumor. Distal colorectal tumors were defined as tu-
mors located from the splenic flexure to the rectum. For CRC
cases with available tumor tissue, we retrieved formalin-fixed
paraffin-embedded tissue blocks from hospitals throughout the
United States, as previously described (52). Adjacent normal
tissue and tumor sections from all CRC cases were reviewed by a
pathologist (S.O).

The presence of intratumoral F. nucleatum (53) and Bifido-
bacterium spp. (54) was assessed by real-time polymerase chain
reaction (PCR). Positivity was defined as a detectable level of
bacterial DNA, and negativity was defined as an undetectable
level as previously described. PCR and pyrosequencing were
performed to detect mutations in KRAS (codons 12, 13, 61, and
146) (55), BRAF (codon 600) (56), and PIK3CA (exons 9 and 20)
(57). LINE-1 methylation status was measured by PCR on
bisulfite-treated DNA and pyrosequencing and categorized as
high if $ 60% of sites were methylated and low if ,60% were
methylated (58). MSI status was determined using 10 micro-
satellite markers (D17S250, D18S55, D18S56, D18S67, D18S487,
D2S123, D5S346, BAT25, BAT26, and BAT40) (59). Tumors
were classified as MSI-high if 30% or more of the markers dem-
onstrated instability. We quantified DNA methylation using
polymerase chain reaction in 8CIMP-specific promoters (MLH1,
NEUROG1, RUNX3, CACNA1G, CDKN2A [p16], CRABP1,
IGF2, and SOCS1) (60).We classified tumors as CIMP-high if 6 or
more promoters were methylated and as CIMP-low/negative if
0–5 promoters were methylated (61). PTGS2 (cyclooxygenase-2)
(62) and nuclear CTNNB1 (beta-catenin) (52) expression was
measured by immunohistochemistry as described previously and
graded as negative/low, intermediate, and high.

Assessments of covariates

Height and weight were reported at study inception, and weight
was updated biennially. Bodymass index (BMI) was calculated as
weight in kilograms/height in meters squared. Physical activity
was self-reported using validated questionnaires every 2–4 years
(63).We also assessed and updated the age they started or stopped
smoking, number of cigarettes smoked daily, family history of
CRC among first-degree relatives, regular use of aspirin, previous
health care engagement (assessed as a visit to a care provider in
the past 2 years), and history of lower gastrointestinal endoscopy.

Statistical analyses

We excluded participants with a history of CRC or inflammatory
bowel disease before study baseline or during follow-up. We also
excluded individuals with missing information on dietary intake
and thosewho reported implausible energy intake (,800or.4,200
kcal/d) at baseline. Follow-up time accrued from study enrollment
until the date of CRC diagnosis, death from any cause, or the end of
follow-up (January 31, 2012), whichever occurred first.

To examine whether the association between the sulfur mi-
crobial diet and CRC differed by subtype, we used Cox pro-
portional hazards models with a duplication method for
competing risks and computed age and multivariable-adjusted
hazard ratios (HRs) and their 95% confidence intervals (CIs).We
tested for heterogeneity by using ameta-regressionmethodwith a
subtype-specific random effect term (64). We separately evalu-
ated heterogeneity by subtype among distal colon and rectal tu-
mors to evaluate subsite-specific effects, given the previously

observed association between the sulfur microbial diet and tu-
mors arising from the distal colorectum (23).

To test for trend, participants were assigned the median value
of their dietary pattern tertile.Multivariate analyses were adjusted
for family history of CRC in a first-degree relative (yes/no), BMI
(categories, ,21, 21–24.9, 25–29.9, 30–31.9, and $32 kg/m2),
physical activity (metabolic equivalent task hr/wk, quintiles),
smoking (categories: never, past, and current: 1–14, 15–24, and
$25 cigarettes/d), regular aspirin use (yes/no), total caloric intake
(continuous), previous lower endoscopy within the past 2 years
(yes/no), and physical examination in the past 2 years (yes/no).
All analyses were additionally stratified by age (continuous) and
calendar year. Covariates were chosen a priori and prospectively
updated. For missing data, nonmissing data from 1 previous data
cycle were carried forward. Two-sided P values ,0.005 were
considered statistically significant as recommended (65). SAS
version 9.4 (Cary, NC) was used for all statistical analysis.

RESULTS
Among 48,246 eligible participants with 1,077,517 person-years
of follow-up, the mean age of participants at study baseline was
54.2 6 9.8 years. Subjects in the highest tertile of the sulfur mi-
crobial diet generally had poorer health-related indices. They
tended to have higher BMIs, consume more alcohol, and were
more likely to smoke and take aspirin regularly (Table 1).

We documented 1,264 incident cases of CRC. Among CRC
cases with information on anatomic site, we identified 637 distal
colon and rectal cancers. Tumor tissue data were available for
approximately 40% of total CRCs and 50% of distal colon and
rectal cancers. The baseline characteristics of participants with
CRC whose tumors we analyzed were overall similar to those of
participants whose tumors we did not analyze (data not shown).

We examined whether the association between the sulfur
microbial diet and total CRC differed by relevant molecular tu-
mor subtypes (Table 2). After accounting for multiple hypothesis
testing, there was no conclusive evidence of heterogeneity.
However, the association of the sulfur microbial diet with CRC
incidence seemed to differ by PTGS2 status (Pheterogeneity5 0.04)
when accounting for multiple testing with an a level of 0.005.
Multivariable HRs for the highest tertile of sulfur microbial diet
scores (vs the lowest) were 1.31 (95%CI: 0.99–1.74; Ptrend5 0.07)
for PTGS2-high subtype, 0.99 (95% CI: 0.61–1.59; Ptrend 5 0.95)
for PTGS2-intermediate subtype, and 0.65 (95% CI, 0.36–1.15;
Ptrend 5 0.17) for PTGS2-negative/low subtype. There was no
evidence for heterogeneity by KRAS, BRAF, PIK3CA, LINE-1,
CIMP, MSI, or CTNNB1 status. Similarly, the relationship be-
tween the sulfurmicrobial diet and total CRC did not differ by the
presence of intratumoral microbes F. nucleatum or Bifidobacte-
rium spp. (Table 3).

Given our previous findings linking the sulfur microbial diet
and cancers of the distal colorectum, we subsequently focused on
CRC that had arisen in the distal colon or rectum. We found
trends for PTGS2-high (HR 1.58 [95% CI: 1.09–2.28], Ptrend 5
0.02), CTNNB1-high (HR 2.10 [95% CI: 1.04–4.21], Ptrend 5
0.04), and KRAS-wildtype tumors (HR 1.52 [95% CI: 1.06–2.17],
Ptrend 5 0.02), but we did not observe statistically significant
heterogeneity (Pheterogeneity 5 0.08, Pheterogeneity 5 0.25, and Phe-
terogeneity 5 0.06, respectively) (Table 4). There was no apparent
heterogeneity by BRAF, PIK3CA, LINE-1, CIMP, or MSI status
among distal colon and rectal cancers (Table 4).We observed that
the association of the sulfur microbial diet with distal colon and
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rectal cancers seemed to differ by the presence of intratumoral
Bifidobacterium spp., although the difference was not statistically
significant (Pheterogeneity5 0.03) when accounting for adjustment
for multiple testing with an a level of 0.005 (Table 5). The mul-
tivariable HR for the highest tertile of sulfur microbial diet scores
(vs the lowest) was 1.65 (95% CI: 1.14–2.39; Ptrend 5 0.01) for
Bifidobacterium-negative distal CRC, but these associations were
not observed in Bifidobacterium-negative total CRC (Ptrend 5
0.27). Similar to the result with overall CRC, there was no ob-
served heterogeneity in the association of diet and incidence of
distal colon and rectal cancers by F. nucleatum status (Table 5).

DISCUSSION
In a large US prospective cohort of men, we found that the asso-
ciation between the sulfur microbial diet and CRC incidence may
differ by molecular and microbial subtypes. We found that a pre-
viously described sulfur microbial dietary pattern associated with
an increased abundance of cancer-associated sulfur-metabolizing
bacteria may be more strongly associated with PTGS2-high tu-
mors. Finally, we observed a relative depletion of intratumoral
Bifidobacterium spp., a taxon associated with beneficial health and
anticancer effects, associated with higher sulfur microbial diet
scores. These results provide early evidence that may link lifestyle

and the development of specific CRC subtypes through dietary
modulation of gut microbial communities.

Diet has played a long-recognized role in altering CRC risk
(8,50,66). Modulation of the gut microbiome may be one mecha-
nism through which certain dietary exposures contribute to or
protect against carcinogenesis along the colorectum (10,67,68).
Among intestinal microbial communities, sulfur-metabolizing
bacteria are an important class of organisms implicated in CRC
tumorigenesis. Through the metabolism of dietary sulfur, these
organisms may release H2S, a compound whose gut luminal con-
centration is critically determined by the abundance of sulfur-
metabolizing bacteria, as opposed to the sulfur content of foods
alone (69,70). Interestingly, beer intake contributed negatively to
sulfur microbial diet scores. Although some data have shown an
increased risk of CRC associated with heavy beer consumption
(71), our results may suggest that modest beer consumption, in
combination with other food groups, could be protective against
CRC throughmodulationof the sulfur-metabolizing bacteria. Both
H2S and sulfur-metabolizing bacteria have been implicated in
carcinogenesis in the colorectum, possibly through mechanisms
related to free radical formation (18–20), immunomodulation (21),
disruption of the protective colonic mucus bilayer (22), and im-
paired cell cycle arrest and apoptosis (11).

Table 1. Baseline age-standardized characteristics by the sulfur microbial diet score, HPFS (1986)

Sulfur microbial diet score

Tertile 1 (n5 16,123) Tertile 2 (n5 16,195) Tertile 3 (n5 15,928)

Age, yr 54.2 (10.0) 54.2 (9.8) 54.1 (9.6)

BMI, kg/m2 25.0 (3.1) 25.4 (3.2) 26.2 (3.4)

Physical activity, METS-hr/wk 21.0 (27.3) 18.3 (26.3) 16.9 (24.4)

Former smokers, % 39 41 46

Current smokers, % 7.8 8.4 13

White race, % 96 95 96

Family history of CRC, % 15 15 15

Regular aspirin use, % 28 29 31

Screening lower endoscopy within the past

2 yr, %

27 27 27

Physical examination within the past 2 yr, % 52 51 50

Alcohol intake (g/d) 11.9 (16.1) 8.1 (10.8) 14.3 (18.0)

Total energy intake, kcal/d 2,268 (623) 1863 (552) 1829 (582)

Dietary intake (servings/wk)

Processed meats 1.9 (2.1) 2.2 (2.2) 3.7 (3.9)

Liquor 1.1 (2.6) 1.5 (3.0) 4.8 (7.6)

Low-calorie drinks 1.4 (2.8) 2.0 (3.4) 7.1 (9.6)

Beer 3.6 (6.7) 1.2 (2.3) 1.0 (1.9)

Fruit juice 8.0 (8.0) 5.0 (4.3) 3.7 (3.9)

Legumes 4.5 (3.2) 2.7 (1.7) 2.2 (1.6)

Other vegetables 5.1 (4.0) 3.3 (2.3) 2.7 (2.1)

Sweets and desserts 10.9 (11.2) 6.1 (5.5) 4.8 (5.1)

All values other than age have been directly standardized to the age distribution (in 5-year age groups) of the entire study population.Mean (SD) is presented for continuous
variables.
BMI, body mass index; CRC, colorectal cancer; HPFS, Health Professionals Follow-Up Study; kcal, kilocalories; METS, metabolic equivalent of tasks; m, meters.
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Table 2. Association between sulfur microbial diet scores and incidence of CRC by molecular subtype

Molecular subtype T1 T2 T3 Ptrend Pheterogeneity
a

KRAS

KRAS-wildtype CRC

No. of cases (n5 339), No. 101 123 115

Age-adjusted HR (95% CI)b 1 (referent) 1.23 (0.94–1.61) 1.23 (0.93–1.62) 0.14

Multivariable HR (95% CI)c 1 (referent) 1.19 (0.91–1.56) 1.15 (0.87–1.52) 0.34

KRAS-mutant CRC 0.24

No. of cases (n5 223), No. 79 76 68

Age-adjusted HR (95% CI)b 1 (referent) 0.97 (0.70–1.33) 0.95 (0.68–1.32) 0.73

Multivariable HR (95% CI)c 1 (referent) 0.94 (0.68–1.29) 0.89 (0.63–1.24) 0.47

BRAF

BRAF-wildtype CRC

No. of cases (n5 517), No. 161 181 175

Age-adjusted HR (95% CI)b 1 (referent) 1.13 (0.91–1.41) 1.18 (0.94–1.48) 0.15

Multivariable HR (95% CI)c 1 (referent) 1.10 (0.88–1.37) 1.11 (0.88–1.39) 0.40

BRAF-mutant CRC 0.22

No. of cases (n5 45), No. 17 18 10

Age-adjusted HR (95% CI)b 1 (referent) 1.07 (0.55–2.07) 0.64 (0.29–1.41) 0.29

Multivariable HR (95% CI)c 1 (referent) 1.04 (0.53–2.02) 0.60 (0.27–1.32) 0.22

PIK3CA

PIK3CA-wildtype CRC

No. of cases (n5 434), No. 135 157 142

Age-adjusted HR (95% CI)b 1 (referent) 1.17 (0.92–1.48) 1.13 (0.89–1.44) 0.33

Multivariable HR (95% CI)c 1 (referent) 1.14 (0.9–1.45) 1.07 (0.84–1.38) 0.59

PIK3CA-mutant CRC 0.68

No. of cases (n5 94), No. 33 31 30

Age-adjusted HR (95% CI)b 1 (referent) 0.93 (0.57–1.53) 1.01 (0.61–1.67) 0.98

Multivariable HR (95% CI)c 1 (referent) 0.90 (0.55–1.48) 0.96 (0.58–1.58) 0.85

LINE-1

LINE-1 methylation high CRC

No. of cases (n5 364), No. 115 131 118

Age-adjusted HR (95% CI)b 1 (referent) 1.15 (0.89–1.49) 1.13 (0.86–1.47) 0.39

Multivariable HR (95% CI)c 1 (referent) 1.12 (0.86–1.44) 1.05 (0.80–1.37) 0.74

LINE-1 methylation low CRC 0.89

No. of cases (n5 200), No. 64 71 65

Age-adjusted HR (95% CI)b 1 (referent) 1.12 (0.79–1.57) 1.10 (0.77–1.56) 0.61

Multivariable HR (95% CI)c 1 (referent) 1.08 (0.77–1.52) 1.02 (0.71–1.45) 0.93

CIMP

CIMP-low/negative CRC

No. of cases (n5 454), No. 144 154 156

Age-adjusted HR (95% CI)b 1 (referent) 1.08 (0.85–1.36) 1.17 (0.93–1.49) 0.19

Multivariable HR (95% CI)c 1 (referent) 1.05 (0.83–1.33) 1.10 (0.87–1.40) 0.44

CIMP-high CRC 0.15

No. of cases (n5 63), No. 24 26 13

Age-adjusted HR (95% CI)b 1 (referent) 1.10 (0.63–1.92) 0.60 (0.31–1.19) 0.18

American College of Gastroenterology Clinical and Translational Gastroenterology

C
O
LO

N

Sulfur Microbial Diet and CRC Subtypes 5



Our finding of possible diet-induced heterogeneity of risk
builds on a well-established body of research on the molecular
heterogeneity of CRC. Several previous studies have linked

certain dietary exposures with an increased risk of specific CRC
molecular subtypes (27–32). In addition, there are data sup-
porting distinct gut microbial communities with different CRC

Table 2. (continued)

Molecular subtype T1 T2 T3 Ptrend Pheterogeneity
a

Multivariable HR (95% CI)c 1 (referent) 1.07 (0.61–1.87) 0.56 (0.29–1.12) 0.12

MSI

Non–MSI-high CRC

No. of cases (n5 489), No. 157 166 166

Age-adjusted HR (95% CI)b 1 (referent) 1.07 (0.85–1.34) 1.16 (0.92–1.45) 0.22

Multivariable HR (95% CI)c 1 (referent) 1.04 (0.83–1.30) 1.08 (0.86–1.37) 0.51

MSI-high CRC 0.97

No. of cases (n5 64), No. 17 29 18

Age-adjusted HR (95% CI)b 1 (referent) 1.74 (0.95–3.17) 1.16 (0.59–2.25) 0.67

Multivariable HR (95% CI)c 1 (referent) 1.68 (0.92–3.07) 1.08 (0.55–2.11) 0.84

PTGS2

PTGS2-negative/low CRC

No. of cases (n5 89), No. 31 39 19

Age-adjusted HR (95% CI)b 1 (referent) 1.29 (0.80–2.08) 0.69 (0.39–1.23) 0.26

Multivariable HR (95% CI)c 1 (referent) 1.25 (0.78–2.02) 0.65 (0.36–1.15) 0.17

PTGS2-intermediate CRC 0.04

No. of cases (n5 106), No. 36 36 34

Age-adjusted HR (95% CI)b 1 (referent) 1.03 (0.65–1.64) 1.05 (0.65–1.69) 0.86

Multivariable HR (95% CI)c 1 (referent) 1.01 (0.63–1.60) 0.99 (0.61–1.59) 0.95

PTGS2-high CRC

No. of cases (n5 328), No. 93 118 117

Age-adjusted HR (95% CI)b 1 (referent) 1.30 (0.98–1.71) 1.39 (1.05–1.84) 0.03

Multivariable HR (95% CI)c 1 (referent) 1.26 (0.95–1.67) 1.31 (0.99–1.74) 0.07

CTNNB1 (Nuclear)

Nuclear CTNNB1-negative/low CRC

No. of cases (n5 239), No. 73 96 70

Age-adjusted HR (95% CI)b 1 (referent) 1.36 (1.00–1.86) 1.08 (0.77–1.51) 0.64

Multivariable HR (95% CI)c 1 (referent) 1.33 (0.98–1.81) 1.03 (0.73–1.44) 0.88

Nuclear CTNNB1-intermediate CRC 0.12

No. of cases (n5 170), No. 54 58 58

Age-adjusted HR (95% CI)b 1 (referent) 1.09 (0.75–1.59) 1.18 (0.81–1.72) 0.40

Multivariable HR (95% CI)c 1 (referent) 1.07 (0.73–1.55) 1.12 (0.77–1.64) 0.56

Nuclear CTNNB1-high CRC

No. of cases (n5 87), No. 24 28 35

Age-adjusted HR (95% CI)b 1 (referent) 1.21 (0.70–2.10) 1.65 (0.98–2.79) 0.06

Multivariable HR (95% CI)c 1 (referent) 1.18 (0.68–2.05) 1.56 (0.92–2.65) 0.09

BRAF, v-raf murine sarcoma viral oncogene homolog B1; CI, confidence interval; CIMP, CpG islandmethylator phenotype; CRC, colorectal cancer; CTNNB1, catenin beta-
1; HR, hazard ratio; KRAS, Kirsten rat sarcoma; LINE-1, long-interspersed nucleotide element-1; MSI, microsatellite instable; PIK3CA, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha; PTGS2, prostaglandin synthase 2; T, tertile.
aHeterogeneity was tested using a meta-regression method with a subtype-specific random effect term among multivariable models.
bModels stratified by age and calendar year and adjusted for total caloric intake (kcals/d).
cModels stratified as above and additionally adjusted for family history of CRC in any first-degree relative, BMI (categories), physical activity (METS-hr/wk), smoking (never
vs past vs current), recent aspirin use, history of previous lower gastrointestinal endoscopy, and history of physical examination.
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subtypes (72,73). Our results extend these findings and provide
new insights in carcinogenic processes induced by the complex
interaction between dietary intake and microbial ecology.

We expand on the link between dietary exposures, gut mi-
crobial ecology, and carcinogenesis. The genus Bifidobacterium
seems to inhibit colorectal carcinogenesis (45,74), modulate gut
mucosal barrier function (75), and enhance antitumor immunity
(76). Our finding that higher sulfur microbial diet scores may be
associated with a higher incidence of Bifidobacterium-negative
distal CRC may suggest that this relationship could be mediated
by alterations in a distinct class of microbes capable of metabo-
lizing sulfur. Although it is unclear why this association was ob-
served only among distal tumors, it may be a result of heterogeneity
in microbial biogeography (77,78). By contrast, we did not identify
heterogeneity by F. nucleatum status. A species capable of dietary
sulfur metabolism, F. nucleatum is relatively rare in healthy pop-
ulations and was not included in the derivation of the sulfur mi-
crobial diet. The observed absence of an effect by F. nucleatum status
may reflect distinct regional ecology in the distal colorectum, where
F. nucleatum–positive tumors are less common (79,80).

Although the precise mechanism by which diet and microbial
communities could increase the risk of PTGS2-high cancers is
unknown, our findings may implicate carcinogenesis by proin-
flammatory mechanisms and abnormalities in bile acid metab-
olism (81,82). PTGS2 is involved in the conversion of free
arachidonic acid into prostaglandins, which are potent proin-
flammatory mediators in colorectal carcinogenesis (83,84).

PTGS2-mediated inflammation secondary to cell membrane
damage (82), activation of tumor-associated fibroblasts (85), and
epidermal growth factor receptor signaling (86) can be stimulated
in response to deoxycholic acid, a secondary bile acid. Deoxy-
cholic acid is a potential carcinogen that is produced in high levels
in individuals who consume diets high in animal protein, a pri-
mary component of the sulfur microbial diet. Animal protein
contains high levels of sulfur-containing amino acids such as
taurine and cysteine, the former of which can be transformed to
deoxycholic acid in the presence of taurine-respiring bacteria
such as Bilophila wadsworthia (82), a microbe whose relative
enrichment was associated with higher sulfur microbial diet
scores (23). Taken together, these studies offer possible mecha-
nistic explanations for the elevated risk associated with a key
component of the sulfur microbial diet, directly implicating ab-
errant signaling along PTGS2 pathways.

There are several strengths to this study. We leveraged a large,
prospective cohort with over 20 years of follow-up with validated
dietary instruments. Consequently, we were able to assess the link
between long-term dietary trends and development of cancer. At
the same time, the prospective nature of data collection limited
the potential for recall and ascertainment bias. The detailed data
across a wide range of lifetime exposures allowed us to adjust for
multiple potential confounders. Finally, the sulfur microbial diet
was previously identified through incorporating metagenomic
taxonomic assignment and metatranscriptomic functional
activity.

Table 3. Association between sulfur microbial diet scores and incidence of CRC by intratumoral microbes of interest

Molecular subtype T1 T2 T3 Ptrend Pheterogeneity
a

Fusobacterium nucleatum

F. nucleatum–negative CRC

No. of cases (n5 462), No. 145 170 147

Age-adjusted HR (95% CI)b 1 (referent) 1.19 (0.94–1.49) 1.11 (0.88–1.41) 0.38

Multivariable HR (95% CI)c 1 (referent) 1.15 (0.92–1.45) 1.05 (0.82–1.33) 0.72

F. nucleatum–positive CRC 0.35

No. of cases (n5 60), No. 21 12 27

Age-adjusted HR (95% CI)b 1 (referent) 0.57 (0.28–1.16) 1.37 (0.77–2.44) 0.25

Multivariable HR (95% CI)c 1 (referent) 0.56 (0.27–1.14) 1.30 (0.73–2.32) 0.33

Bifidobacterium spp.

Bifidobacterium spp.–negative CRC

No. of cases (n5 378), No. 115 132 131

Age-adjusted HR (95% CI)b 1 (referent) 1.15 (0.89–1.48) 1.23 (0.95–1.60) 0.11

Multivariable HR (95% CI)c 1 (referent) 1.12 (0.87–1.45) 1.16 (0.89–1.51) 0.27

Bifidobacterium spp.–positive CRC 0.33

No. of cases (n5 148), No. 49 55 44

Age-adjusted HR (95% CI)b 1 (referent) 1.14 (0.77–1.68) 0.98 (0.65–1.48) 0.93

Multivariable HR (95% CI)c 1 (referent) 1.10 (0.74–1.62) 0.91 (0.60–1.39) 0.68

CI, confidence interval; CRC, colorectal cancer; HR, hazard ratio; spp, species; T, tertile.
aHeterogeneity was tested using a meta-regression method with a subtype-specific random effect term among multivariable models.
bModels stratified by age and calendar year and adjusted for total caloric intake (kcals/d).
cModels stratified as above and additionally adjusted for family history of CRC in any first-degree relative, BMI (categories), physical activity (METS-hr/wk), smoking (never
vs past vs current), recent aspirin use, history of previous lower gastrointestinal endoscopy, and history of physical examination.
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Table 4. Association between sulfur microbial diet scores and incidence of distal colon and rectal cancers by molecular subtype

Molecular subtype T1 T2 T3 Ptrend Pheterogeneity
a

KRAS

KRAS-wildtype distal CRC

No. of cases (n5 208), No. 53 72 83

Age-adjusted HR (95% CI)b 1 (referent) 1.35 (0.94–1.94) 1.66 (1.16–2.36) 0.005

Multivariable HR (95% CI)c 1 (referent) 1.30 (0.91–1.88) 1.52 (1.06–2.17) 0.02

KRAS-mutant distal CRC 0.06

No. of cases (n5 109), No. 36 39 34

Age-adjusted HR (95% CI)b 1 (referent) 1.09 (0.69–1.72) 1.02 (0.63–1.64) 0.95

Multivariable HR (95% CI)c 1 (referent) 1.03 (0.65–1.63) 0.93 (0.57–1.50) 0.76

BRAF

BRAF-wildtype distal CRC

No. of cases (n5 310), No. 85 108 117

Age-adjusted HR (95% CI)b 1 (referent) 1.27 (0.94–1.70) 1.46 (1.09–1.96) 0.01

Multivariable HR (95% CI)c 1 (referent) 1.22 (0.91–1.63) 1.34 (1.00–1.81) 0.05

BRAF-mutant distal CRC 0.43

No. of cases (n5 8), No. 3 3 2

Age-adjusted HR (95% CI)b 1 (referent) 1.01 (0.20–5.00) 0.68 (0.11–4.07) 0.68

Multivariable HR (95% CI)c 1 (referent) 0.98 (0.20–4.85) 0.62 (0.10–3.75) 0.61

PIK3CA

PIK3CA-wildtype distal CRC

No. of cases (n5 257), No. 69 91 97

Age-adjusted HR (95% CI)b 1 (referent) 1.32 (0.96–1.82) 1.49 (1.08–2.05) 0.02

Multivariable HR (95% CI)c 1 (referent) 1.27 (0.92–1.76) 1.37 (0.99–1.90) 0.06

PIK3CA-mutant distal CRC 0.53

No. of cases (n5 39), No. 12 14 13

Age-adjusted HR (95% CI)b 1 (referent) 1.15 (0.53–2.49) 1.17 (0.53–2.59) 0.70

Multivariable HR (95% CI)c 1 (referent) 1.10 (0.51–2.38) 1.08 (0.49–2.39) 0.86

LINE-1

LINE-1 methylation high distal CRC

No. of cases (n5 186), No. 55 62 69

Age-adjusted HR (95% CI)b 1 (referent) 1.14 (0.79–1.65) 1.36 (0.94–1.95) 0.10

Multivariable HR (95% CI)c 1 (referent) 1.09 (0.75–1.59) 1.24 (0.86–1.79) 0.26

LINE-1 methylation low distal CRC 0.61

No. of cases (n5 134), No. 34 50 50

Age-adjusted HR (95% CI)b 1 (referent) 1.48 (0.95–2.30) 1.57 (1.01–2.45) 0.05

Multivariable HR (95% CI)c 1 (referent) 1.42 (0.91–2.20) 1.42 (0.91–2.23) 0.13

CIMP

CIMP-low/negative distal CRC

No. of cases (n5 285), No. 81 98 106

Age-adjusted HR (95% CI)b 1 (referent) 1.21 (0.89–1.64) 1.39 (1.03–1.88) 0.03

Multivariable HR (95% CI)c 1 (referent) 1.17 (0.86–1.59) 1.28 (0.94–1.74) 0.12

CIMP-high distal CRC 0.30

No. of cases (n5 10), No. 4 5 1

Age-adjusted HR (95% CI)b 1 (referent) 1.26 (0.34–4.72) 0.29 (0.03–2.63) 0.34
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Wealso acknowledge several limitations. Despite the large size
of the cohort, there was limited power to detect heterogeneity in
the association of dietary exposure and subtypes of CRC. The

sulfur microbial diet was derived among bacterial species with
sufficient prevalence and abundance in the healthy human gut. As
a result, our dietary exposuremay not necessarily capture specific

Table 4. (continued)

Molecular subtype T1 T2 T3 Ptrend Pheterogeneity
a

Multivariable HR (95% CI)c 1 (referent) 1.22 (0.32–4.54) 0.27 (0.03–2.42) 0.29

MSI

Non–MSI-high distal CRC

No. of cases (n5 299), No. 83 104 112

Age-adjusted HR (95% CI)b 1 (referent) 1.27 (0.94–1.70) 1.45 (1.08–1.95) 0.01

Multivariable HR (95% CI)c 1 (referent) 1.22 (0.90–1.64) 1.34 (0.99–1.81) 0.06

MSI-high distal CRC 0.06

No. of cases (n5 12), No. 2 4 6

Age-adjusted HR (95% CI)b 1 (referent) 2.04 (0.37–11.14) 3.30 (0.66–16.44) 0.13

Multivariable HR (95% CI)c 1 (referent) 1.96 (0.36–10.72) 3.04 (0.61–15.15) 0.16

PTGS2

PTGS2-negative/low distal CRC

No. of cases (n5 40), No. 13 16 11

Age-adjusted HR (95% CI)b 1 (referent) 1.28 (0.61–2.66) 0.95 (0.42–2.13) 0.91

Multivariable HR (95% CI)c 1 (referent) 1.22 (0.58–2.55) 0.87 (0.38–1.95) 0.74

PTGS2-intermediate distal CRC 0.08

No. of cases (n5 49), No. 16 16 17

Age-adjusted HR (95% CI)b 1 (referent) 1.03 (0.51–2.07) 1.15 (0.58–2.29) 0.71

Multivariable HR (95% CI)c 1 (referent) 1.00 (0.50–2.00) 1.05 (0.52–2.10) 0.90

PTGS2-high distal CRC

No. of cases (n5 206), No. 51 75 80

Age-adjusted HR (95% CI)b 1 (referent) 1.49 (1.04–2.15) 1.71 (1.19–2.45) 0.004

Multivariable HR (95% CI)c 1 (referent) 1.44 (1.00–2.08) 1.58 (1.09–2.28) 0.02

CTNNB1 (Nuclear)

Nuclear CTNNB1-negative/low distal CRC

No. of cases (n5 110), No. 27 45 38

Age-adjusted HR (95% CI)b 1 (referent) 1.70 (1.05–2.76) 1.53 (0.93–2.53) 0.11

Multivariable HR (95% CI)c 1 (referent) 1.64 (1.01–2.67) 1.42 (0.85–2.35) 0.20

Nuclear CTNNB1-intermediate distal CRC 0.25

No. of cases (n5 114), No. 37 32 45

Age-adjusted HR (95% CI)b 1 (referent) 0.87 (0.54–1.40) 1.31 (0.84–2.04) 0.23

Multivariable HR (95% CI)c 1 (referent) 0.84 (0.52–1.36) 1.22 (0.78–1.91) 0.37

Nuclear CTNNB1-high distal CRC

No. of cases (n5 60), No. 12 23 25

Age-adjusted HR (95% CI)b 1 (referent) 1.94 (0.96–3.92) 2.27 (1.13–4.55) 0.02

Multivariable HR (95% CI)c 1 (referent) 1.88 (0.93–3.79) 2.10 (1.04–4.21) 0.04

BRAF, v-raf murine sarcoma viral oncogene homolog B1; CI, confidence interval; CIMP, CpG islandmethylator phenotype; CRC, colorectal cancer; CTNNB1, catenin beta-
1; HR, hazard ratio; KRAS, Kirsten rat sarcoma; MSI, microsatellite instable; LINE-1, long-interspersed nucleotide element-1; PIK3CA, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha; PTGS2, prostaglandin synthase 2; T, tertile.
aHeterogeneity was tested using a meta-regression method with a subtype-specific random effect term among multivariable models.
bModels stratified by age and calendar year and adjusted for total caloric intake (kcals/d).
cModels stratified as above and additionally adjusted for family history of CRC in any first-degree relative, BMI (categories), physical activity (METS-hr/wk), smoking (never
vs past vs current), recent aspirin use, history of previous lower gastrointestinal endoscopy, and history of physical examination.
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pathogenic bacterial strains or less prevalent but highly active taxa in
the CRC microbiome (e.g., F. nucleatum) (44,87,88). Our study was
conducted amongmale,mostlywhite health professionals, potentially
limiting the generalizability of our results. It is possible that stronger
associations between diet and CRC incidence would have been ob-
served in different cohorts with a wider range of dietary quality.

In conclusion, we demonstrate that long-term adherence to a
dietary pattern associated with a greater abundance of sulfur-
metabolizing bacteria may be associated with a greater incidence
of PTGS2-high CRC and Bifidobacterium-negative distal CRC
among adult men. Our data suggest that dietary modulation of
the gut microbiome may be an attractive population-level pre-
ventive strategy in high-risk individuals. Additional studies are
needed to further characterize the relationship between dietary
sulfur metabolism, gut microbial ecology, and CRC among large
and diverse study populations.
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vs past vs current), recent aspirin use, history of previous lower gastrointestinal endoscopy, and history of physical examination.
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Study Highlights

WHAT IS KNOWN

3 Sulfur-metabolizing bacteria have been implicated in
colorectal cancer (CRC).

3 We previously showed that a diet that enriches for sulfur-
metabolizing bacteria was associated with an increased risk
of distal CRC in adult men.

3 It is unclear whether this relationship is driven by associations
with particular molecular or microbially-enriched tumor
subtypes.

WHAT IS NEW HERE

3 The sulfur microbial diet may be associated with PTGS2-high
CRC in adult men.

3 The sulfur microbial diet may be associated with distal colon
and rectal cancers depleted of intratumoral Bifidobacteria in
adult men.

TRANSLATIONAL IMPACT

3 Dietary modulation of the gut microbiome may contribute to
colorectal carcinogenesis.

3 Dietary manipulation of the gut microbiomemay reduce CRC
risk.
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