20,378 research outputs found

    The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys

    Full text link
    We perform forecasts for how baryon acoustic oscillation (BAO) scale and redshift-space distortion (RSD) measurements from future spectroscopic emission line galaxy (ELG) surveys such as Euclid are degraded in the presence of spectral line misidentification. Using analytic calculations verified with mock galaxy catalogs from log-normal simulations we find that constraints are degraded in two ways, even when the interloper power spectrum is modeled correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio for the power spectrum of the target galaxies, which propagates to all cosmological constraints and increases with contamination fraction, fcf_c. Secondly, degeneracies can open up between fcf_c and cosmological parameters. In our calculations this typically increases BAO scale uncertainties at the 10-20% level when marginalizing over parameters determining the broadband power spectrum shape. External constraints on fcf_c, or parameters determining the shape of the power spectrum, for example from cosmic microwave background (CMB) measurements, can remove this effect. There is a near-perfect degeneracy between fcf_c and the power spectrum amplitude for low fcf_c values, where fcf_c is not well determined from the contaminated sample alone. This has the potential to strongly degrade RSD constraints. The degeneracy can be broken with an external constraint on fcf_c, for example from cross-correlation with a separate galaxy sample containing the misidentified line, or deeper sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra paragraph added at the end of Section 4.3, minor text edits

    Probing Cosmic Strings with Satellite CMB measurements

    Full text link
    We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps, and shows that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null signals for pure Gaussian maps converges to a χ2\chi^2 distribution, with detectability threshold corresponding to a string induced step signal with an amplitude of about 100 \muK which corresponds to a limit of roughly Gμ<1.5×106G\mu < 1.5\times 10^{-6}. We study the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we derive sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment.Comment: 14 pages, 3 figures, to be published in JCA

    Modularity and community structure in networks

    Full text link
    Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.Comment: 7 pages, 3 figure

    Galaxy-CMB and galaxy-galaxy lensing on large scales: sensitivity to primordial non-Gaussianity

    Get PDF
    A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose amplitude is given by the fNL parameter, offers a powerful test of inflation. In this paper we calculate the modification of two-point cross-correlation statistics of weak lensing - galaxy-galaxy lensing and galaxy-Cosmic Microwave Background (CMB) cross-correlation - due to fNL. We derive and calculate the covariance matrix of galaxy-galaxy lensing including cosmic variance terms. We focus on large scales (l<100) for which the shape noise of the shear measurement becomes irrelevant and cosmic variance dominates the error budget. For a modest degree of non-Gaussianity, fNL=+/-50, modifications of the galaxy-galaxy lensing signal at the 10% level are seen on scales R~300 Mpc, and grow rapidly toward larger scales as \propto R^2. We also see a clear signature of the baryonic acoustic oscillation feature in the matter power spectrum at ~150 Mpc, which can be measured by next-generation lensing experiments. In addition we can probe the local-form primordial non-Gaussianity in the galaxy-CMB lensing signal by correlating the lensing potential reconstructed from CMB with high-z galaxies. For example, for fNL=+/-50, we find that the galaxy-CMB lensing cross power spectrum is modified by ~10% at l~40, and by a factor of two at l~10, for a population of galaxies at z=2 with a bias of 2. The effect is greater for more highly biased populations at larger z; thus, high-z galaxy surveys cross-correlated with CMB offer a yet another probe of primordial non-Gaussianity.Comment: 21 pages, 30 figure

    Comment on ``Solution of Classical Stochastic One-Dimensional Many-Body Systems''

    Full text link
    In a recent Letter, Bares and Mobilia proposed the method to find solutions of the stochastic evolution operator H=H0+γLH1H=H_0 + {\gamma\over L} H_1 with a non-trivial quartic term H1H_1. They claim, ``Because of the conservation of probability, an analog of the Wick theorem applies and all multipoint correlation functions can be computed.'' Using the Wick theorem, they expressed the density correlation functions as solutions of a closed set of integro-differential equations. In this Comment, however, we show that applicability of Wick theorem is restricted to the case γ=0\gamma = 0 only.Comment: 1 page, revtex style, comment on paper Phys. Rev. Lett. {\bf 83}, 5214 (1999

    The first-mover advantage in scientific publication

    Full text link
    Mathematical models of the scientific citation process predict a strong "first-mover" effect under which the first papers in a field will, essentially regardless of content, receive citations at a rate enormously higher than papers published later. Moreover papers are expected to retain this advantage in perpetuity -- they should receive more citations indefinitely, no matter how many other papers are published after them. We test this conjecture against data from a selection of fields and in several cases find a first-mover effect of a magnitude similar to that predicted by the theory. Were we wearing our cynical hat today, we might say that the scientist who wants to become famous is better off -- by a wide margin -- writing a modest paper in next year's hottest field than an outstanding paper in this year's. On the other hand, there are some papers, albeit only a small fraction, that buck the trend and attract significantly more citations than theory predicts despite having relatively late publication dates. We suggest that papers of this kind, though they often receive comparatively few citations overall, are probably worthy of our attention.Comment: 7 pages, 3 figure

    Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals

    Full text link
    The quasi-unit cell picture describes the atomic structure of quasicrystals in terms of a single, repeating cluster which overlaps neighbors according to specific overlap rules. In this paper, we discuss the precise relationship between a general atomic decoration in the quasi-unit cell picture atomic decorations in the Penrose tiling and in related tiling pictures. Using these relations, we obtain a simple, practical method for determining the density, stoichiometry and symmetry of a quasicrystal based on the atomic decoration of the quasi-unit cell taking proper account of the sharing of atoms between clusters.Comment: 14 pages, 8 figure

    A simple physical model for scaling in protein-protein interaction networks

    Full text link
    It has recently been demonstrated that many biological networks exhibit a scale-free topology where the probability of observing a node with a certain number of edges (k) follows a power law: i.e. p(k) ~ k^-g. This observation has been reproduced by evolutionary models. Here we consider the network of protein-protein interactions and demonstrate that two published independent measurements of these interactions produce graphs that are only weakly correlated with one another despite their strikingly similar topology. We then propose a physical model based on the fundamental principle that (de)solvation is a major physical factor in protein-protein interactions. This model reproduces not only the scale-free nature of such graphs but also a number of higher-order correlations in these networks. A key support of the model is provided by the discovery of a significant correlation between number of interactions made by a protein and the fraction of hydrophobic residues on its surface. The model presented in this paper represents the first physical model for experimentally determined protein-protein interactions that comprehensively reproduces the topological features of interaction networks. These results have profound implications for understanding not only protein-protein interactions but also other types of scale-free networks.Comment: 50 pages, 17 figure
    corecore