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Galaxy-CMB and Galaxy-Galaxy Lensing on Large Scales: Sensitivity to
Primordial Non-Gaussianity

Abstract
A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose amplitude is
given by the ƒNL parameter, offers a powerful test of inflation. In this paper, we calculate the modification of
two-point cross-correlation statistics of weak lensing—galaxy-galaxy lensing and galaxycosmic microwave
background (CMB) crosscorrelation—due to ƒNL. We derive and calculate the covariance matrix of galaxy-
galaxy lensing, including cosmic variance terms. We focus on large scales (l < 100) for which the shape noise
of the shear measurement becomes irrelevant and cosmic variance dominates the error budget. For a modest
degree of non-Gaussianity, ƒNL = ±50 modifications of the galaxy-galaxy-lensing signal at the 10% level are
seen on scales R ~ 300 Mpc, and grow rapidly toward larger scales as ∝ R2. We also see a clear signature of the
baryonic acoustic oscillation feature in the matter power spectrum at ~ 150 Mpc, which can be measured by
next-generation lensing experiments. In addition, we can probe the local-form primordial non-Gaussianity in
the galaxy-CMB lensing signal by correlating the lensing potential reconstructed from CMB with high-z
galaxies. For example, for ƒNL = ±50, we find that the galaxy-CMB lensing cross-power spectrum is modified
by ~ 10% at l ~ 40, and by a factor of 2 at l ~ 10, for a population of galaxies at z = 2 with a bias of 2. The effect
is greater for more highly biased populations at larger z; thus, high-z galaxy surveys cross correlated with CMB
offer a yet another probe of primordial non-Gaussianity.
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A convincing detection of primordial non-Gaussianity in the local form of the bispectrum, whose

amplitude is given by the fNL parameter, offers a powerful test of inflation. In this paper, we calculate the

modification of two-point cross-correlation statistics of weak lensing—galaxy-galaxy lensing and galaxy-

cosmic microwave background (CMB) crosscorrelation—due to fNL. We derive and calculate the

covariance matrix of galaxy-galaxy lensing, including cosmic variance terms. We focus on large scales

(l < 100) for which the shape noise of the shear measurement becomes irrelevant and cosmic variance

dominates the error budget. For a modest degree of non-Gaussianity, fNL ¼ �50 modifications of the

galaxy-galaxy-lensing signal at the 10% level are seen on scales R� 300 Mpc, and grow rapidly toward

larger scales as / R2. We also see a clear signature of the baryonic acoustic oscillation feature in the

matter power spectrum at �150 Mpc, which can be measured by next-generation lensing experiments. In

addition, we can probe the local-form primordial non-Gaussianity in the galaxy-CMB lensing signal by

correlating the lensing potential reconstructed from CMB with high-z galaxies. For example, for fNL ¼
�50, we find that the galaxy-CMB lensing cross-power spectrum is modified by�10% at l� 40, and by a

factor of 2 at l� 10, for a population of galaxies at z ¼ 2 with a bias of 2. The effect is greater for more

highly biased populations at larger z; thus, high-z galaxy surveys cross correlated with CMB offer a yet

another probe of primordial non-Gaussianity.

DOI: 10.1103/PhysRevD.80.123527 PACS numbers: 98.62.Sb, 98.65.�r, 98.80.�k

I. INTRODUCTION

Why study non-Gaussianity? For many years it was
recognized that the simple inflationary models based
upon a single slowly-rolling scalar field would predict
nearly Gaussian primordial fluctuations. In particular,
when we parametrize the magnitude of non-Gaussianity
in the primordial curvature perturbations � , which gives the
observed temperature anisotropy in the cosmic microwave
Bbackground (CMB) in the Sachs–Wolfe limit as�T=T ¼
��=5, using the so-called nonlinear parameter fNL [1] as
�ðxÞ ¼ �LðxÞ þ ð3fNL=5Þ�2LðxÞ, then the bispectrum of �
is given by1 B� ðk1; k2; k3Þ ¼ ð6fNL=5Þ½P� ðk1ÞP� ðk2Þ þ
ð2 cyclic termsÞ�, where P� ðkÞ / kns�4 is the power spec-

trum of � and ns is the tilt of the power spectrum, con-
strained as ns ¼ 0:960� 0:013 by the Wilkinson
microwave anisotropy probe (WMAP) 5-year data [2].
This form of the bispectrum has the maximum signal in
the so-called squeezed triangle for which k3 � k2 � k1
[3]. In this limit, we obtain

B� ðk1; k1; k3 ! 0Þ ¼ 12

5
fNLP� ðk1ÞP� ðk3Þ: (1)

The earlier calculations showed that fNL from single-field
slow-roll inflation would be of order the slow-roll parame-
ter, �� 10�2 [4–6]. However, it is not until recent that it is
finally realized that the coefficient of P� ðk1ÞP� ðk3Þ from
the simplest single-field slow-roll inflation with the canoni-
cal kinetic term in the squeezed limit is given precisely by
[7,8]

B� ðk1; k1; k3 ! 0Þ ¼ ð1� nsÞP� ðk1ÞP� ðk3Þ: (2)

Comparing this result with the form predicted by the fNL
model, one obtains fNL ¼ ð5=12Þð1� nsÞ.
Perhaps, the most important theoretical discovery re-

garding primordial non-Gaussianity from inflation over
the last few years is that, not only models with the canoni-
cal kinetic term, but all single-inflation models predict the
bispectrum in the squeezed limit given by Eq. (2), regard-
less of the form of potential, kinetic term, slow-roll, or
initial vacuum state [9–12]. Therefore, the prediction from
all single-field inflation models is fNL ¼ ð5=12Þð1� nsÞ ¼
0:017 for ns ¼ 0:96. A convincing detection of fNL well
above this level is a breakthrough in our understanding of

*djeong@astro.as.utexas.edu
1Definition of the bispectrum in terms of Fourier coefficients

of � is h�k1
�k2

�k3
i ¼ ð2�Þ3�ðk1 þ k2 þ k3ÞB� ðk1; k2; k3Þ.

Throughout this paper we shall order ki such that k3 � k2 � k1.
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the physics of very early universe [13,14]. The current limit
from the WMAP 5-year data is fNL ¼ 38� 21 (68% CL)
[15].

There are many ways of measuring fNL. The most
popular method has been the bispectrum of CMB [1,16–
19] (also see [20] for a pedagogical review). The other
methods include the trispectrum of CMB [21,22], the
bispectrum of galaxies [23–26], and the abundance of
galaxies and clusters of galaxies [27–30].

Recently, analytical [31–35] and numerical [31,36–38]
studies of the effects of primordial non-Gaussianity on the
power spectrum of dark matter halos PhðkÞ have revealed
an unexpected signature of primordial non-Gaussianity in
the form of a scale-dependent galaxy bias, i.e., PhðkÞ ¼
b21PmðkÞ ! ½b1 þ�bðkÞ�2PmðkÞ, wherePmðkÞ is the power
spectrum of matter density fluctuations, and

�bðkÞ ¼ 3ðb1 � 1ÞfNL�mH
2
0�c

DðzÞk2TðkÞ : (3)

Here, DðzÞ and TðkÞ are the growth rate and the transfer
function for linear matter density fluctuations, respectively,
and �c ¼ 1:68 is the threshold linear density contrast for a
spherical collapse of an overdensity region. The k2 factor
in the denominator of �bðkÞ shows that this effect is
important only on very large scales. Highly biased tracers
are more sensitive to fNL.

II. HALO-MASS CORRELATION FROM GALAXY-
GALAXY LENSING

A. Formula

The scale-dependent bias was theoretically discovered
when the authors of [31] studied the form of the cross-
correlation power spectrum between the dark matter halos
and the underlying matter density fluctuations, PhmðkÞ ¼
½b1 þ �bðkÞ�PmðkÞ. We can observe PhmðkÞ by cross cor-
relating the locations of galaxies or clusters of galaxies
with the matter density fluctuations traced by the weak
gravitational lensing (see [39] for a review).

One efficient way of measuring PhmðkÞ is to use the so-
called galaxy-galaxy-lensing technique [40–46]: choose
one lens galaxy at a redshift zL, and measure the mean of
tangential shears in images of lensed (source or back-
ground) galaxies around the chosen central lensing galaxy
as a function of radii from that central galaxy. Finally,
average those mean tangential shears over all lensing
galaxies at the same redshift zL.

We begin with the definition of the tangential shear �t on
the flat sky2

�tð�Þ ¼ ��1ð�Þ cosð2�Þ � �2ð�Þ sinð2�Þ; (4)

where � ¼ ð� cos�; � sin�Þ, and �1 and �2 are compo-

nents of the shear field.3 The coordinate system and the
meaning of �1 and �2 are explained in Fig. 1. For purely
tangential shears shown in Fig. 1, �t is always positive.
This property allows us to average �t over the ring around
the origin to estimate the mean tangential shear ��t:

�� tð�Þ �
Z 2�

0

d�

2�
�tð�;�Þ: (5)

On the flat sky, �1 and �2 are related to the projected mass-
density fluctuation in Fourier space �ðlÞ as

�1ð�Þ ¼
Z d2l

ð2�Þ2 �ðlÞ cosð2’Þe
il	�; (6)

�2ð�Þ ¼
Z d2l

ð2�Þ2 �ðlÞ sinð2’Þe
il	�; (7)

where ’ is the angle between l and e1, i.e., l ¼
ðl cos’; l sin’Þ. Using Eqs. (6) and (7) in Eq. (4), we write
the tangential shear in terms of �ðlÞ as

�tð�Þ ¼ �
Z d2l

ð2�Þ2 �ðlÞ cos½2ð�� ’Þ�eil� cosð��’Þ: (8)

FIG. 1. Coordinate system and �1 and �2. The shear along e1
has �1 > 0 and �2 ¼ 0, whereas the shear along e2 has �1 < 0
and �2 ¼ 0. The shear along e1 þ e2 has �1 ¼ 0 and �2 > 0,
whereas the shear along e1 � e2 has �1 ¼ 0 and �2 < 0.

2For an all-sky analysis, this relation needs to be replaced with
the exact relation using the spin-2 harmonics [47].

3As the shear has two independent components, we are ignor-
ing another linear combination of �1 and �2 by only focusing on
the tangential shear. In particular, on large scales there is
information in the other component of the shear, and thus the
full analysis including both shear components (not just tangen-
tial one) yields a modest (smaller than a factor of

ffiffiffi
2

p
) improve-

ment in the signal-to-noise ratio. Moreover, using magnification
(in addition to shears), which is proportional to the convergence
field �, can also yield a modest improvement.
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The mean tangential shear [Eq. (5)] is then given by

��tð�Þ ¼ �
Z d2l

ð2�Þ2 �ðlÞ
Z 2�

0

d�

2�
cos½2ð�� ’Þ�


 eil� cosð��’Þ

¼
Z d2l

ð2�Þ2 �ðlÞJ2ðl�Þ: (9)

Here, we have used the identity

JmðxÞ ¼
Z 2�þ	

	

dc

2�
eiðmc�x sinc Þ; (10)

with m ¼ 2, c ¼ �� ’� �=2, 	 ¼ ’þ �=2, andR
2�
0 dc sinð2c Þeix cosc ¼ 0.
The ensemble average of the mean tangential shear

vanishes, i.e., h ��ti ¼ 0, as h�i ¼ 0. This simply means
that the average of the mean tangential shears, measured
with respect to random points on the sky, vanishes. We
obtain nonzero values when we average the mean tangen-
tial shears measured with respect to the locations of halos
(galaxies or clusters of galaxies). This quantity, called the
galaxy-galaxy lensing or cluster-galaxy lensing, can be
used to measure the halo-mass cross correlation.

While clusters of galaxies may be identified directly
with dark matter halos of a given mass, how are galaxies
related to halos? Some galaxies (‘‘field galaxies’’) may
also be identified directly with dark matter halos; however,
galaxies residing within groups or clusters of galaxies
should be identified with subhalos moving in a bigger
dark matter halo. For such subhalos, our argument given
below may not be immediately used. However, it is obser-
vationally feasible to identify the central galaxies in groups
or clusters of galaxies and measure the mean tangential
shear around them. A number of studies of luminous red
galaxies (LRGs) extracted from the Sloan Digital Sky
Survey (SDSS) have shown that these are typical central
galaxies in galaxy groups [46,48,49]. Scalings such as the
mass-luminosity scaling imply that LRGs provide a useful
proxy for the halos within which they reside. We will
assume in this study that such tracers will enable the
halo-shear cross correlation to be measured. There are
some caveats such as bimodal mass distributions in galaxy
groups [49] and the extrapolation to higher redshift, but we
will leave a detailed exploration to real galaxy tracers for
later work.

The ensemble average of the mean tangential shears
relative to the locations of halos at a given redshift zL,
denoted as h ��h

t ið�; zLÞ, is related to the angular cross-
correlation power spectrum of halos and �, Ch�

l , as [50]

h ��h
t ið�; zLÞ ¼

Z ldl

2�
Ch�
l ðzLÞJ2ðl�Þ: (11)

We give the derivation of this result in Appendix A.
With the lens redshift zL known (from spectroscopic

observations), we can calculate the comoving radius, R,

corresponding to the angular separation on the sky � as
R ¼ �dAð0; zLÞ where dAð0; zLÞ is the comoving angular
diameter distance from z ¼ 0 to z ¼ zL. Using Limber’s
approximation [51,52] on the flat sky relating Ch�

l to

PhmðkÞ,4 we can write Eq. (11) as [50]

h ��h
t iðR; zLÞ ¼ 
0

�cðzLÞ
Z kdk

2�
Phmðk; zLÞJ2ðkRÞ: (12)

Here, 
0 is the mean comoving mass density of the
Universe, and �cðzLÞ is the so-called critical surface den-
sity:

��1
c ðzLÞ ¼ 4�G

c2
ð1þ zLÞdAð0; zLÞ

Z 1

zL

dzSpðzSÞdAðzL; zSÞdAð0; zSÞ ;

(13)

where pðzSÞ is the redshift distribution of sources normal-
ized to unity

R
dzpðzÞ ¼ 1 and dAð0; zÞ and dAðz; zSÞ are

the comoving angular diameter distances out to z and
between z and zS, respectively. The numerical value of
4�G=c2 is 6:01
 10�19 Mpc=M�, and 4�G
0=c

2 is
1:67
 10�7ð�mh

2Þ Mpc�2.
Equation (12) is often written as

h ��h
t iðR; zLÞ ¼ ��ðR; zLÞ

�cðzLÞ : (14)

To simplify the analysis, let us define the ‘‘effective source
redshift’’ of a given survey from the following equation:

dAðzL; zS;effÞ
dAð0; zS;effÞ �

Z 1

zL

dzSpðzSÞdAðzL; zSÞdAð0; zSÞ : (15)

Henceforth, we shall use zS to denote zS;eff , and write

��1
c ðzL; zSÞ ¼ 4�G

c2
ð1þ zLÞdAð0; zLÞdAðzL; zSÞdAð0; zSÞ : (16)

Figure 2 shows �c for zL ¼ 0:1 (2dFGRS, Two Degree
Field Galaxy Redshift Survey), 0.2 (SDSS main), 0.3
(SDSS LRG), and 0.5 and 0.8 (both LSST, Large
Synoptic Survey Telescope). The smaller �c is, the larger
the observed mean tangential shear is.

B. Results

We can now calculate the observable ��ðR; zLÞ for
various values of fNL. We use

4As we are dealing with correlations on very large angular
scales, one may worry about the validity of Limber’s approxi-
mation. In Appendix C, we give a detailed study of the validity
and limitation of Limber’s approximation for the galaxy-galaxy
lensing.
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��ðR; zLÞ ¼ 
0b1
Z kdk

2�
Pmðk; zLÞJ2ðkRÞ

þ 
0

Z kdk

2�
�bðk; zLÞPmðk; zLÞJ2ðkRÞ;

(17)

where the scale-dependent bias �bðk; zÞ is given by
Eq. (3). As we are interested in large scales, i.e., R>
10h�1 Mpc, we shall use the linear matter spectrum for
PmðkÞ.

Figure 3 shows, for the Gaussian initial condition
(fNL ¼ 0), ��ðR; zLÞ from R ¼ 50 to 200h�1 Mpc. We
have chosen the bias parameters and lens redshifts to
represent the existing data sets as well as the future ones:
b1 ¼ 2 at zL ¼ 0:3 (similar to the observed values from
SDSS LRGs [53], solid line), b1 ¼ 2 at zL ¼ 0:5 (higher-z
LRGs [54], dotted line), b1 ¼ 2 at zL ¼ 0:8 (galaxies that
can be observed by LSST, [55], dashed line), and b1 ¼ 5 at
zL ¼ 0:8 (clusters of galaxies that can be observed by
LSST, dot-dashed line). While LSST is an imaging survey,
we assume that we can obtain spectroscopic redshifts of
some (� 106) lens galaxies by follow-up observations. It is
also straightforward to extend our analysis to lenses se-
lected by photometric redshifts.

At R� 110h�1 Mpc, we see a clear ‘‘shoulder’’ due to
the baryonic feature in the linear matter power spectrum
(often called baryon acoustic oscillations; BAO). The
sound horizon at the drag epoch (which is more relevant
to the matter power spectrum than the photon decoupling
epoch for the CMB power spectrum) calculated from the
cosmological model that we use, the ‘‘WMAPþ BAOþ

SN ML’’ (where SN stands for supernova and ML repre-
sents maximum likelihood) parameters in Table 1 of [2], is
106:9h�1 Mpc, as shown as the vertical line in this figure.
The magnitude of �� on this scale is �0:1hM� pc�2.
Assuming a range of �c from future surveys �c �
1000–4000hM� pc�2 (see Fig. 2), this value corresponds
to the mean tangential shear of order 2:5
 10�5 to 10�4. Is
this observable?
For comparison, Sheldon et al. [48] measured ��ðRÞ �

0:5hM� pc�2 at R� 30h�1 Mpc from clusters of galaxies
in the SDSS main sample. The mean lens redshift for these
data is zL � 0:2, which would give �c � 5000hM� pc�2

(see Fig. 2 for zL ¼ 0:2 and zS � 0:4); thus, the magnitude
of the mean tangential shear that they were able to measure
is of order 10�4, which is only�1 to 4 times larger than the
magnitude of the signal expected from the BAO.
Therefore, detecting the BAO signature in ��ðRÞ should
be quite feasible with the future observations. We shall give
a more quantitative discussion on the detectability of BAO
from the galaxy-galaxy-lensing effect in Sec II D.
How about fNL? As expected, the effect of fNL is

enhanced on very large scales, i.e., hundreds of Mpc (see
Fig. 4). For fNL ¼ �50, ��ðRÞ is modified by 10–20% at
R� 300h�1 Mpc (depending on b1 and zL; see Fig. 5).
The modification grows rapidly toward larger scales, in
proportion toR2. On such a large scale (R� 300h�1 Mpc),
the galaxy-galaxy-lensing signal is on the order of
��� 0:01hM� pc�2, and thus we need to measure the
mean tangential shear down to the level of ��h

t � 2:5

10�6 to 10�5, i.e., 10–40 times smaller than the level of

FIG. 2. Critical surface density �cðzL; zSÞ as a function of the
source redshift zS for various lens redshifts that roughly corre-
spond to the Two Degree Field Galaxy Redshift Survey
(2dFGRS; zL ¼ 0:1, solid), the main sample of the Sloan
Digital Sky Survey (SDSS; zL ¼ 0:2, dotted), the luminous red
galaxies (LRGs) of SDSS (zL ¼ 0:3, dashed), and the Large
Synoptic Survey Telescope (LSST; zL ¼ 0:5 and 0.8, dot-dashed
and triple-dot-dashed, respectively).

FIG. 3. The baryonic feature in the matter power spectrum, as
seen in the galaxy-galaxy lensing ��ðRÞ for several populations
of lens galaxies with b1 ¼ 2 at zL ¼ 0:3 (similar to SDSS LRGs,
solid), b1 ¼ 2 at zL ¼ 0:5 (higher-z LRGs, dotted), b1 ¼ 2 at
zL ¼ 0:8 (galaxies that can be observed by LSST, dashed), and
b1 ¼ 5 at zL ¼ 0:8 (clusters of galaxies that can be observed by
LSST, dot-dashed). The vertical line shows the location of the
baryonic feature, RBAO ¼ 106:9h�1 Mpc, calculated from the
‘‘WMAPþ BAOþ SN ML’’ parameters in Table 1 of [2]. Note
that we have used the linear matter power spectrum and the
Gaussian initial condition (fNL ¼ 0) for this calculation.
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sensitivity achieved by the current observations. Can we
observe such a small shear?

C. Covariance matrix of the mean tangential shear

In order to study the feasibility of measuring the tangen-
tial shear of order 10�6, we compute the covariance matrix
of the mean tangential shears averaged over NL lens gal-
axies. As derived in Appendix B, the covariance matrix of

the mean tangential shear is

h ��h
t ð�Þ ��h

t ð�0Þi � h ��h
t ð�Þih ��h

t ð�0Þi
¼ 1

4�fsky

Z ldl

2�
J2ðl�ÞJ2ðl�0Þ



�
ðCh�

l Þ2 þ
�
Ch
l þ

1

nL

��
C�
l þ

�2
�

nS

��
: (18)

This expression includes the cosmic variance, the shot

FIG. 4. Imprints of the local-type primordial non-Gaussianity in the galaxy-galaxy lensing ��ðRÞ for the same populations of lens
galaxies as in Fig. 3. The solid, dashed, and dotted lines show fNL ¼ 0, �50, and �100, respectively.

FIG. 5. Fractional differences between ��ðRÞ from non-Gaussian initial conditions and the Gaussian initial condition
j��ðR; fNLÞ=��ðR; fNL ¼ 0Þ � 1j calculated from the curves shown in Fig. 4. The dot-dashed, dashed, and dotted lines show fNL ¼
�10, �50, and �100, respectively, while the thin solid line shows / R2 with an arbitrary normalization.
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noise of lens halos, as well as the shape noise ��. As far as

we know, this formula has not been derived before. Note
that we have assumed a single source and lens redshift. For
multiple source and lens redshifts, the covariance matrix
needs to be suitably generalized.

Here, Ch
l and C�

l are the angular power spectra of the

lens halos (galaxies or cluster of galaxies) and �, respec-
tively, and nL and nS are the number densities of the lens
halos and the lensed (source) galaxies, respectively. These
angular power spectra Ch�

l , Ch
l , C

�
l will be related to the

corresponding three-dimensional power spectrum, PðkÞ, in
Sec III C.

In the limit that the cosmic variance is unimportant, we
recover the usual expression used in the literature:

h ��h
t ð�Þ ��h

t ð�0Þi � h ��h
t ð�Þih ��h

t ð�0Þi ¼
�2

�

NL

�Dð�� �0Þ
2��nS

;

(19)

where NL ¼ 4�fskynL is the total number of lens halos

available in the data. In this limit the errors in different
radial bins are uncorrelated, and they are simply given by
the shape noise �� reduced by the square-root of the

number of source galaxies available within each radial
bin and the total number of lens halos that we can use for
averaging the mean tangential shear. In particular, at each
bin with a width ��, we find the variance of

Var ½ ��h
t ð�Þ� ¼

�2
�

2��ð��ÞnSNL

; (20)

in the absence of the cosmic variance.
When would the cosmic variance become important?

There is the maximum surface number density of sources
nS;max ¼ �2

�=C
�
l above which the shape noise becomes

irrelevant. This gives the maximum number of sources
within a given radial bin of a width �� ( � �) above
which the shape noise becomes irrelevant:

NS;max ¼ 2��ð��ÞnS;max ¼ ðl�Þ2
�
��

�

�
�2

�

l2C�
l =ð2�Þ

: (21)

For l� ¼ � (the usual relation between l and �) and �� ’
0:3 (realistic shape noise), we find

NS;max ’
�
��

�

�
1

l2C�
l =ð2�Þ

: (22)

At l� 100, l2C�
l =ð2�Þ � 10�5 [50]; thus, we do not gain

sensitivity any further by having more than, say, 104 gal-
axies (for ��=� ¼ 0:1) within a single radial bin.

Alternatively, one can define the minimum multipole
lmin below which the cosmic variance term dominates:

lmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�nS
�2

�

l2C�
l

2�

vuut : (23)

For LSST, we expect to have the surface density of sources

on the order of nS ¼ 30 arcmin�2 ¼ 3:5
 108 sr�1. For

�� ¼ 0:3, we find lminðLSSTÞ � 1:6
 105
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2C�

l =ð2�Þ
q

.

At l & 103, l2C�
l =ð2�Þ & 10�4 [50]; thus, at l & 103 the

cosmic variance term dominates.
In the limit that the covariance matrix is dominated by

the cosmic variance terms, we have

h ��h
t ð�Þ ��h

t ð�0Þi � h ��h
t ð�Þih ��h

t ð�0Þi

¼ 1

4�fsky

Z ldl

2�
J2ðl�ÞJ2ðl�0ÞCh

l C
�
l ð1þ r2l Þ;

where rl � Ch�
l =

ffiffiffiffiffiffiffiffiffiffiffiffi
C�
l C

h
l

q
is the cross-correlation coeffi-

cient. The variance at a given radial bin is

Var ½ ��h
t ð�Þ� ¼ 1

4�fsky

Z ldl

2�
½J2ðl�Þ�2Ch

l C
�
l ð1þ r2l Þ:

(24)

D. Detectability of the mean tangential shear

In this section, we shall calculate the expected uncer-
tainties in radially binned measurements of the mean tan-
gential shear.
The mean tangential shear averaged within the i-th bin

h �̂�h
t ið�iÞ, i.e., the mean tangential shear averaged within an

annulus between �i;min and �i;max, is given by

h �̂�h
t ið�iÞ ¼ 2�

Að�iÞ
Z �i;max

�i;min

�d�h ��h
t ið�Þ �

Z ldl

2�
Ch�
l Ĵ2ðl�iÞ;

(25)

where Að�iÞ ¼ �ð�2i;max � �2i;minÞ is the area of the annulus,
and

Ĵ 2ðl�iÞ ¼ 2�

Að�iÞ
Z �i;max

�i;min

�d�J2ðl�Þ; (26)

is the Bessel function averaged within a bin.
Similarly, the covariance matrix of the binned mean

tangential shears is given by

Cij � h �̂�h
t ð�iÞ �̂�h

t ð�jÞi � h �̂�h
t ð�iÞih �̂�h

t ð�jÞi
¼ 1

4�fsky

Z ldl

2�
Ĵ2ðl�iÞĴ2ðl�jÞ



�
ðCh�

l Þ2 þ
�
Ch
l þ

1

nL

��
C�
l þ

�2
�

nS

��
: (27)

This matrix contains the full information regarding the
statistical errors of the binned measurements of the mean
tangential shear, which includes the cosmic variance errors
due to the cosmic shear (C�

l ), clustering of lens galaxies

(Ch
l ) and their correlations (C

h�
l ), the finite number density

of lenses, and the noise in intrinsic shapes of source
galaxies.
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The variance at a given radial bin is

Var½ �̂�h
t ð�iÞ� ¼ 1

4�fsky

Z ldl

2�
½Ĵ2ðl�iÞ�2



�
ðCh�

l Þ2 þ
�
Ch
l þ

1

nL

��
C�
l þ

�2
�

nS

��
:

(28)

In the analysis of the galaxy-galaxy-lensing effects in the
literature, the cosmic variance due to cosmic shear is
usually ignored:

Var½ �̂�h
t ð�iÞ�j�¼0 ¼ 1

4�fsky

Z ldl

2�
½Ĵ2ðl�iÞ�2



��

Ch
l þ

1

nL

�
�2

�

nS

�
: (29)

This is probably a reasonable approximation for the current
measurements at R & 30h�1 Mpc; however, on larger
scales which will be probed by the next-generation lens
surveys, the cosmic variance due to cosmic shear must be
included, as we show in Fig. 6.

For estimating the expected uncertainties, we assume a
million lens galaxies with very narrow (delta-functionlike)
redshift distribution centered at zL (NL ¼ 106) over the full
sky fsky ¼ 1. We also assume �� ¼ 0:3, and nS ¼ 3:5

108 sr�1. As the covariance matrix is dominated by the
cosmic variance terms, the size of open boxes is insensitive
to the exact values of NL, ��, or nS. (See Sec. III C.) First,

we calculate the binned uncertainties in the region close to
the baryonic feature, R� 110h�1 Mpc. In Fig. 6, the open
boxes show the full uncertainties including the cosmic
variance due to cosmic shear [Eq. (28)], while the filled
boxes show the uncertainties without the cosmic shear term
[Eq. (29)]. The latter is clearly negligible compared to the
former on large scales R * 50h�1 Mpc.
Can we distinguish ��ðRÞ with and without the bar-

yonic feature? Without baryons, we do not see any features
in ��ðRÞ; see dashed lines in Fig. 6 which are calculated
from the smooth linear power spectrum without the bar-
yonic feature [56]. To see if we can detect this feature in
��ðRÞ, we estimate the �2 difference between��ðRÞwith
and without the baryonic feature:

��2 � X
i;j

ð��i � ��i;nwÞC�1
ij ð��j � ��j;nwÞ;

where��i is the mean tangential shear of i-th bin,��nw is
�� without the baryonic feature, and C�1

ij is the inverse of

the binned covariance matrix [Eq. (27)]. Note that we have
to use the full covariance matrix as neighboring bins are
strongly correlated (Fig. 7). Using only a single lens red-
shift slice, we find ��2 ¼ 0:85 (zL ¼ 0:3, b ¼ 2), 1.07
(zL ¼ 0:5, b ¼ 2), 1.32 (zL ¼ 0:8, b ¼ 3), and 1.34 (zL ¼
0:8, b ¼ 5). For example, if we add up all these measure-
ments at different slices (zL ¼ 0:3, 0.5, and 0.8), signifi-
cance of detection of the baryonic feature is ��2 ¼ 3:2,
i.e., 93% C.L. As we expect to have many more lens

FIG. 6. Same as Fig. 3, but with the expected 1-� uncertainties for full-sky lens surveys and a single lens redshift. Adjacent bins are
highly correlated, with the correlation coefficients shown in Fig. 7. The open (filled) boxes show the binned uncertainties with
(without) the cosmic variance term due to the cosmic shear field included. See Eqs. (28) and (29) for the formulae giving open and
filled boxes, respectively. We use the radial bin of size �R ¼ 5h�1 Mpc. For comparison, we also show ��ðRÞ computed from the
smooth power spectrum without the baryonic feature [56] (dashed lines). Note that the uncertainties are calculated for a single lens
redshift slice, and thus they will go down as we add more lens redshift slices.
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FIG. 7. The cross-correlation-coefficient matrix rij � Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, where Cij is the covariance matrix given in Eq. (27), for a radial

bin of �R ¼ 5h�1 Mpc. We show rij for the same populations of lens galaxies as shown in Figs. 3 and 6. We use the same number of

source galaxies and the same shape noise as in Fig. 6. The neighboring bins are highly correlated for �R < 10h�1 Mpc.

FIG. 8. Same as Fig. 4, but with the expected 1-� uncertainties for full-sky lens surveys and a single lens redshift. Adjacent bins are
highly correlated. The open (filled) boxes show the binned uncertainties with (without) the cosmic variance term due to the cosmic
shear field included. See Eqs. (28) and (29) for the formulae giving open and filled boxes, respectively. We use logarithmic bins with
�R ¼ R=10. Note that the uncertainties are calculated for a single lens redshift slice, and thus they will go down as we add more lens
redshift slices.
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redshift slices from the future lens surveys, detection and
measurement of the baryonic feature in �� are quite
feasible. For multiple lens slices, the gain in the signal-
to-noise ratio will be approximately

ffiffiffiffiffiffiffiffiffiffi
Nlens

p
; thus, for 10

lens slices the errors would be a factor of 3 smaller. At best,
we can expect �25 slices, which gives a factor of 5
reduction in errors.

What about fNL? We show the expected 1-� uncertain-
ties for the mean tangential shears, ��ðRÞ, on larger scales
in Fig. 8. For this figure, we use logarithmic bins with the
radial size of �R=R ¼ 0:1. We find that ��ðRÞ on R ’
250h�1 Mpc is detectable, even from a single lens redshift
slice. This is remarkable; however, the predicted uncer-
tainties are too large for us to distinguish between fNL ¼ 0
and fNL ¼ 100 using a single lens redshift slice. In order to
obtain a tight limit on fNL, we would need to include many
lens redshift slices.

Note that the uncertainty at a given R is larger for a
smaller lens redshift. This is because a given R corresponds
to a larger angular size for a lower lens redshift, making the
cosmic variance contribution greater.

III. HARMONIC SPACE APPROACH

A. Formula

The mean tangential shear h ��h
t i or �� is currently

widely used for measuring the halo-shear cross correlation,
as this method is easy to implement and is less sensitive to
systematic errors.

In this section, we shall study the effects of fNL on the
equivalent quantity in harmonic space: the halo-
convergence cross-power spectrum, Ch�

l . The mean tan-

gential shear is related to Ch�
l by the two-dimensional

Fourier integral given in Eq. (11).
The convergence field �ðnÞ is the matter density fluctu-

ations projected on the sky:

�ðnÞ ¼
Z 1

0
dzW�ðzÞ�m½dAð0; zÞn; z�; (30)

where �mðr; zÞ � 
mðr; zÞ= �
mðzÞ � 1, and W�ðzÞ is a lens
kernel which describes the efficiency of lensing for a given
redshift distribution of sources pðzSÞ:

W�ðzÞ ¼ 
0

�cðz; zSÞHðzÞ ; (31)

where the critical density �c is defined in Eq. (16).
Again using Limber’s approximation (whose validity

and limitation are studied in Appendix C), we find the
relation between the angular cross-correlation power spec-
trum of the convergence field and the halo density at a
given lens redshift zL, C

h�
l ðzLÞ, and the halo-mass cross-

correlation power spectrum at the same redshift Phmðk; zLÞ
as

Ch�
l ðzLÞ ¼ 
0

�cðzL; zSÞd2Að0; zLÞ
Phm

�
k ¼ lþ 1=2

dAð0; zLÞ ; zL
�

¼ 4�G
0

c2
ð1þ zLÞ dAðzL; zSÞ

dAð0; zLÞdAð0; zSÞ

 Phm

�
k ¼ lþ 1=2

dAð0; zLÞ ; zL
�
: (32)

Figure 9 shows Ch�
l ðzLÞ for the Gaussian density field as

a function of lens redshifts zL. The convergence fields at
low (high) multipoles are better correlated with low-z
(high-z) galaxies. This is due to the shape of the matter
power spectrum: on very large scales (i.e., low l), the
matter power spectrum is given by the initial power spec-
trum PhmðkÞ / k, and thus we get 1=dAð0; zLÞ from
Phm½k ¼ l=dAð0; zLÞ�. This gives a larger weight to low-z
galaxies. On smaller scales where PhmðkÞ / kneff with
neff ’ �3, we get positive powers of dAð0; zLÞ from
Phm½k ¼ l=dAð0; zLÞ�, which gives a larger weight to
high-z galaxies.

B. Result

We can now calculate Ch�
l for various values of fNL. We

use

FIG. 9. Angular power spectrum of the galaxy-convergence
cross correlation Ch�

l at various multipoles as a function of the

lens redshift zL for two effective source redshifts zs ¼ 1 (top)
and 2 (bottom). We have divided Ch�

l by its maximum value. The

solid, dotted, dashed, dot-dashed, and triple-dot-dashed lines
show l ¼ 10, 50, 100, 350, and 1000, respectively.
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Ch�
l ðzLÞ ¼ 4�G
0

c2
ð1þ zLÞ dAðzL; zSÞ

dAð0; zLÞdAð0; zSÞ



�
b1ðzLÞ þ �b

�
k ¼ lþ 1=2

dAð0; zLÞ ; zL
��


 Pm

�
k ¼ lþ 1=2

dAð0; zLÞ ; zL
�
; (33)

where the scale-dependent bias �bðk; zÞ is given by
Eq. (3).
Figure 10 shows Ch�

l ðzLÞ for fNL ¼ �50 and �100 for

populations of galaxies that we have considered in the
previous sections. For each lens redshift, we calculate the
‘‘effective’’ source redshift by requiring that the angular
diameter distance to the source redshift is twice as large as

FIG. 10. Imprints of the local-type primordial non-Gaussianity in the galaxy-convergence cross-power spectrum, lðlþ 1ÞCh�
l =ð2�Þ,

for the same populations of lens galaxies as in Fig. 3. The solid, dashed, and dotted lines show fNL ¼ 0,�50, and�100, respectively.

FIG. 11. Fractional differences between Ch�
l from non-Gaussian initial conditions and the Gaussian initial condition, calculated from

the curves shown in Fig. 10. These differences are equal to j�bðl ¼ k=dA; zLÞj=b1ðzLÞ. The dashed and dotted lines show fNL ¼ �50
and �100, respectively, while the thin solid lines show l�2 with an arbitrary normalization.
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that to the lens redshift, i.e., dAð0; zSÞ ¼ 2dAð0; zLÞ. With
this requirement, the source redshifts are zs ¼ 0:65, 1.19,
and 2.25 for zL ¼ 0:3, 0.5, and 0.8, respectively.

Figure 11 shows the fractional differences between non-
Gaussian predictions and the Gaussian prediction (fNL ¼
0), which are simply equal to �bðk; zLÞ=b1ðzLÞ where k ¼
l=dAð0; zLÞ. As expected from the form of the scale-
dependent bias, the difference grows toward small multi-
poles as roughly 1=l2. While lower redshift populations do
not show more than 10% difference at l � 10 for fNL ¼
�50, a higher-z population of lens galaxies or clusters of
galaxies at zL ¼ 0:8 show the differences at the level of
�10% at l� 20 and �30% at l� 10. Are these effects
detectable?

C. Covariance matrix of the galaxy-convergence
cross-power spectrum

The covariance matrix of the galaxy-convergence cross-
correlation power spectrum is given by

hCh�
l Ch�

l0 i � hCh�
l ihCh�

l0 i

¼ �ll0

ð2lþ 1Þfsky
�
ðCh�

l Þ2 þ
�
Ch
l þ

1

nL

��
C�
l þ

�2
�

nS

��
; (34)

where �ll0 is Kronecker’s delta symbol showing that the
angular power spectra at different multipoles are uncorre-
lated. Again, Ch

l and C�
l are the angular power spectra of

the lens halos (galaxies or cluster of galaxies) and �,

respectively, and nL and nS are the number densities of
the lens halos and the lensed (source) galaxies,
respectively.
We calculate C�

l by using Limber’s approximation as

C�
l ¼

Z zS

0
dz


2
0

�2
cðz; zSÞ

Pm½k ¼ lþ1=2
dAð0;zÞ ; z�

HðzÞd2Að0; zÞ
: (35)

However, we cannot use Limber’s approximation for Ch
l

unless one considers lens redshift slices that are broad. As
we are assuming a thin lens redshift slice throughout this
paper, we must not use Limber’s approximation, but evalu-
ate the exact integral relation:

Ch
l ¼

2

�

Z
dkk2Pgðk; zLÞj2l ½kdAðzLÞ�; (36)

where jl is the spherical Bessel function, and Pgðk; zÞ is the
linear galaxy power spectrum: PgðkÞ ¼ b21PmðkÞ.
Figure 12 shows the galaxy-galaxy, galaxy-convergence,

and convergence-convergence angular power spectra for
Gaussian (fNL ¼ 0) initial conditions. We also show the
shot noise of the galaxy angular power spectrum, 1=nL, and
the shape noise of the convergence power spectrum,
�2

�=nS, with the following representative values: NL ¼
4�nL ¼ 106, nS ¼ 3:5
 108 sr�1, and �� ¼ 0:3. We

find 1=nL � Ch
l and �2

�=nS � C�
l for the multipoles that

we are interested in, i.e., l & 100, and thus we conclude
that the uncertainties are totally dominated by the cosmic

FIG. 12. Angular power spectra of the galaxy-galaxy correlation Ch
l (thick dotted lines), the galaxy-convergence cross-correlation

Ch�
l (thick solid lines), and the convergence-convergence correlation C�

l (thick dashed lines) for the Gaussian initial condition (fNL ¼
0). The four panels show the same populations of galaxies and clusters of galaxies as in Fig. 10. We also show the galaxy shot noise
1=nL (thin dotted lines) as well as the source shape noise �2

�=nS (thin dashed lines) for NL ¼ 106, �� ¼ 0:3, and nS ¼ 3:5
 108 sr�1.

We find 1=nL � Ch
l and �2

�=nS � C�
l for l & 100.
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variance terms. In other words, the size of the uncertainties
are insensitive to the exact choices of NL, ��, or nS.

We also find that the values of cross-correlation coeffi-

cients rl � Ch�
l =

ffiffiffiffiffiffiffiffiffiffiffiffi
Ch
l C

�
l

q
are small (of order 10–20%): the

maximum values are 0.19, 0.15, and 0.13 for zL ¼ 0:3, 0.5,
and 0.8, respectively. This implies that one may ignore the
contribution of Ch�

l to the covariance matrix, approximat-

ing the variance of Ch�
l of a single lens redshift slice for a

multipole bin of size �l as:

Var ðCh�
l Þ ¼ Ch

l C
�
l

ð2lþ 1Þ�lfsky : (37)

Therefore, we should be able to measure the galaxy-
convergence cross-power spectrum with

Ch�
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCh�

l Þ
q

* 1 when the multipoles satisfy

l * lmin � 1

rl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�l=lÞfsky

q : (38)

For the galaxy-convergence power spectra in Fig. 10 with
the full-sky coverage (fsky ¼ 1) and �l=l ¼ 0:23, we find

lmin ¼ 9:0, 12.1, and 15.7 for zL ¼ 0:3 (zS ¼ 0:65), 0.5
(1.19), and 0.8 (2.25), respectively.

Similarly, we can estimate the maximum radius below
which we can measure the mean tangential shear��ðRÞ as

Rmax ’ �dAð0; zLÞ
lmin

: (39)

For example, with �R=R ¼ �l=l ¼ 0:1, we get Rmax ’
215, 260, and 300h�1 Mpc for zL ¼ 0:3, 0.5, and 0.8,
respectively. These values do give the radii at which the
signal-to-noise ratios are roughly unity in Fig. 8.
Figure 13 shows the expected 1-� uncertainties of Ch�

l

for several populations of lens galaxies. We find that the
cosmic variance completely dominates the uncertainties on
large scales (low l) where the non-Gaussian effects are the
largest. Again, while we find that it would be difficult to
measure fNL from a single lens redshift slice, combining
many redshift slices should help us measure fNL, espe-
cially when we can use many slices at moderately high
redshifts.

IV. HALO-MASS CORRELATION FROM
GALAXY-CMB LENSING

A. Formula

Instead of using the background galaxies for measuring
the cosmic shear field due to the intervening mass, one can
use the CMB as the background light and measure the
shear field of the CMB lensing due to the intervening
mass between us and the photon decoupling epoch at z ’
1089. See [57] for a review on the CMB lensing.
The lensing effect makes CMB anisotropies (both tem-

perature and polarization) non-Gaussian by producing a

FIG. 13. Same as Fig. 10, with the expected 1-� uncertainties for full-sky lens surveys and a single lens redshift. Adjacent bins are
uncorrelated. The open (filled) boxes show the binned uncertainties with (without) the cosmic variance term due to the cosmic shear
field included. We used Eq. (34) for the open boxes, and Eq. (34) with Ch�

l ¼ 0 ¼ C�
l for the filled boxes. We use logarithmic bins of

�l ¼ 0:23l. Note that the uncertainties are calculated for a single lens redshift slice, and thus they will go down as we add more lens
redshift slices.
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nonvanishing connected four-point function, although it
does not produce any nonvanishing three-point function.
One can use this property to reconstruct the lensing poten-
tial field, hence the projected mass-density field between us
and z, from the four-point function of CMB [58–60].

By cross correlating the halo over-density field �h at
some redshift zL (measured from spectroscopic observa-
tions) and the � field reconstructed from the CMB lensing,
one can measure the halo-convergence angular power
spectrum Ch�

l .

The angular power spectrum of the galaxy-CMB lensing
cross correlation is merely a special case of the galaxy-
convergence cross correlation that we have studied in
the previous section: all we need to do is to set the
source redshift zS to be the redshift of the photon decou-
pling epoch z ’ 1089, i.e., zS ¼ z. Note that for a flat
universe, dAðzL; zÞ ¼ dAð0; zÞ � dAð0; zLÞ where
dAð0; zÞ ¼ 9:83h�1 Gpc.

Figure 14 shows that the CMB lensing at low (high)
multipoles are better correlated with low-z (high-z) gal-
axies. This is due to the shape of the matter power spec-
trum, as we have explained in the previous section. Note
that Ch�

l of the CMB lensing for a given multipole de-

creases more slowly with zL than that of the galaxy lensing
due to the geometrical factor dAðzL; zSÞ=dAð0; zSÞ.

Note that CMB and galaxies at z & 1 are correlated also
via the integrated Sachs-Wolfe (ISW) effect [61]. We shall
not include this effect in our cross-correlation calculation
for the following reason. We calculate the cross-correlation
signal between galaxies and the convergence field recon-
structed from CMB. This reconstruction relies on the fact
that lensed CMB fluctuations have nonvanishing connected
four-point function. On the other hand, the linear integrated

Sachs-Wolfe effect does not have such a particular form of
four-point function induced by lensing, and thus should not
contribute to the reconstructed convergence field. See [34]
for the effects of fNL on the galaxy-integrated Sachs-Wolfe
cross correlation.

B. Results

We can now calculate Ch�
l for various values of fNL. We

use

Ch�
l ðzLÞ ¼ 4�G
0

c2
ð1þ zLÞ dAðzL; zÞ

dAð0; zLÞdAð0; zÞ



�
b1ðzLÞ þ �b

�
k ¼ lþ 1

2

dAð0; zLÞ ; zL
��


 Pm

�
k ¼ lþ 1

2

dAð0; zLÞ ; zL
�
; (40)

where the scale-dependent bias �bðk; zÞ is given by
Eq. (3).
Figure 15 shows Ch�

l ðzLÞ for fNL ¼ �50 and �100 for

populations of low-z galaxies that we have considered in
the previous sections: b1 ¼ 2 at zL ¼ 0:3 (similar to SDSS
LRGs, top-left), b1 ¼ 2 at zL ¼ 0:5 (higher-z LRGs, top-
right), b1 ¼ 2 at zL ¼ 0:8 (galaxies that can be observed
by LSST, bottom-left), and b1 ¼ 5 at zL ¼ 0:8 (clusters of
galaxies that can be observed by LSST, bottom-right). The
fractional differences between non-Gaussian predictions
and the Gaussian prediction (fNL ¼ 0) are exactly the
same as those shown in Fig. 11: in the limit where
Limber’s approximation is valid, the galaxy-convergence
power spectrum and the galaxy-CMB lensing power
spectrum for the same lens galaxies differ only by a con-
stant geometrical factor of dAðzL; zÞdAð0; zSÞ=
dAðzL; zSÞdAð0; zÞ. Incidentally, for our choice of the
source redshifts in the previous section,
2dAðzL; zÞ=dAð0; zÞ ¼ 1:83, 1.73, and 1.60 for zL ¼ 0:3,
0.5, and 0.8, respectively.
Therefore, the galaxy-CMB lensing cross correlation

would provide a nice cross-check for systematics of the
galaxy-convergence cross correlation, and vice versa: after
all, we are measuring the same quantity PhmðkÞ by two
different background sources, high-z galaxies and CMB.
In using high-z galaxies as sources, the galaxy-galaxy

lensing measurement may be susceptible to systematic
errors widely discussed in the lensing literature, namely,
shear calibration, coherent point spread function (PSF)
anisotropy, redshift biases, magnification bias, and intrin-
sic alignments of galaxies. Here, we are particularly con-
cerned with errors that affect galaxy-shear cross
correlations by mimicking the angular dependence of the
signal due to nonzero fNL. Fortunately, most systematic
errors that affect shear-shear correlations do not contribute
to galaxy-shear cross correlations: for instance, point
spread function anisotropy affects background galaxy
shapes but not foreground galaxy locations [62]. With

FIG. 14. Angular power spectrum of the galaxy-CMB lensing
Ch�
l at various multipoles as a function of the lens redshift zL.

We have divided Ch�
l by its maximum value. The solid, dotted,

dashed, dot-dashed, and triple-dot-dashed lines show l ¼ 10, 50,
100, 350, and 1000, respectively.
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standard lensing data analysis methods, it can be ensured
that both the shear calibration and point spread function do
not contribute a scale dependence to the first order. Biases
in the redshift distributions of lens and source galaxies can
similarly lead to a misestimation of the amplitude of the
signal, but not its scale dependence. Thus, to the lowest
order, the measurement of fNL via the scale dependence of
the galaxy-galaxy lensing signal is robust to the leading

systematic errors in weak lensing. But a detailed study of
various sources of error is needed given the small signal we
are seeking.
Another benefit of using the CMB lensing as a proxy for

the intervening matter distribution is that we can probe the
galaxy-matter cross correlation at high redshift to which
we cannot reach with the galaxy-galaxy lensing method.
It is especially useful for probing primordial non-

FIG. 15. Imprints of the local-type primordial non-Gaussianity in the galaxy-CMB lensing power spectrum lðlþ 1ÞCh�
l =ð2�Þ for the

same populations of lens galaxies as in Fig. 3. The solid, dashed, and dotted lines show fNL ¼ 0, �50, and �100, respectively.

FIG. 16. Same as Fig. 15, but for high-z lens galaxies with b1 ¼ 2 at zL ¼ 2 (top-left), b1 ¼ 2:5 at zL ¼ 3 (top-right), b1 ¼ 3 at
zL ¼ 4 (bottom-left), and b1 ¼ 3:5 at zL ¼ 5 (bottom-right).
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Gaussianity, as the scale-dependent bias signal is higher for
higher lens redshift: �bðk; zLÞ / 1=DðzLÞ [see Eq. (3)].
Therefore, we find that even higher-z populations of gal-
axies give us a much better chance of detecting the effects
of fNL. Figure 16 shows C

h�
l ðzLÞ for fNL ¼ �50 and�100

for populations of high-z galaxies: b1 ¼ 2 at zL ¼ 2 (top-
left), b1 ¼ 2:5 at zL ¼ 3 (top-right), b1 ¼ 3 at zL ¼ 4
(bottom-left), and b1 ¼ 3:5 at zL ¼ 5 (bottom-right). The
first one, a spectroscopic galaxy survey at zL ¼ 2 with
bL ¼ 2, is within reach by, e.g., the Hobby-Eberly
Telescope Dark Energy Experiment (HETDEX) [63,64].
There we find, for fNL ¼ �50,�10% effect at l� 40, and
a factor of 2 effect at l� 10 (see Fig. 17). The effects grow
bigger at higher z: higher-z surveys at z > 3 can be done
with, e.g., the concept of the Cosmic Inflation Probe
(CIP).5 At zL ¼ 4 and 5 (with b1 ¼ 3 and 4, respectively)
we find �10% effect at l� 100, a factor of 2 effect at l�
30, and even bigger effects at l & 30 (see Fig. 17).

C. Covariance matrix of the galaxy-CMB lensing

The covariance matrix of the galaxy-CMB lensing is
given by [65]

hCh�
l Ch�

l0 i � hCh�
l ihCh�

l0 i

¼ ðCh�
l Þ2 þ ðCh

l þ 1=nLÞðC�
l þ N�

l Þ
ð2lþ 1Þfsky �ll0 ; (41)

where N�
l is the reconstruction noise from CMB given by

[58]. The covariance matrix equation here is the same as
Eq. (34), except that now the shape noise of source galaxies

is replaced by the reconstruction noise of CMB lensing. In
what follows, we shall assume a ‘‘nearly perfect’’ CMB
experiment considered in Hu and Okamoto [58], whose
Gaussian random detector noise is modeled as [66]

CT
l jnoise ¼

�
TCMB

�T

��2
elðlþ1Þ�2=8 ln2;

CE
l jnoise ¼ CB

l jnoise ¼
�
TCMB

�T

��2
elðlþ1Þ�2=8 ln2;

(42)

where the white noise level of detectors is�T ¼ �P=
ffiffiffi
2

p ¼
1 Karcmin, and the full-width-at-half-maximum
(FWHM) of the beam is � ¼ 40. With these detector
parameters and the cosmological parameters of the
‘‘WMAPþ BAOþ SN ML’’ parameters in Table 1 of
[2], we find N�

l ’ 6
 10�8 sr�1 on large scales, l < 100.
Figure 18 shows the galaxy-galaxy, galaxy-convergence,

convergence-convergence angular power spectra for the
Gaussian initial condition (fNL ¼ 0). This figure is quali-
tatively similar to Fig. 12: the galaxy-galaxy correlation is
exactly the same, and the galaxy-convergence power spec-
trum is simply a scaled version of the corresponding curve
in Fig. 12. The major difference comes from C�

l : as the

CMB photons travel a longer path than photons from
source galaxies, the convergence-convergence power spec-
trum is higher for the CMB lensing convergence.
On large scales (l & 100), the covariance matrix is

dominated by the cosmic variance terms: 1=nL � Ch
l

andN�
l � C�

l . The cross-correlation coefficients are small,

of order 10%: the maximum values are 0.12, 0.11, and 0.10
for zL ¼ 0:3, 0.5, and 0.8, respectively. Therefore, we can
again use Eq. (37) for estimating the variance, and find lmin

FIG. 17. Same as Fig. 11, but for high-z lens galaxies with b1 ¼ 2 at zL ¼ 2 (top-left), b1 ¼ 2:5 at zL ¼ 3 (top-right), b1 ¼ 3 at
zL ¼ 4 (bottom-left), and b1 ¼ 3:5 at zL ¼ 5 (bottom-right).

5http://www.cfa.harvard.edu/cip/
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[Eq. (38)] above which we can measure the galaxy-
convergence cross correlation with the signal-to-noise ratio
greater than unity. For logarithmic bins of�l=l ¼ 0:23, we
find lmin ¼ 12:2, 13.5, and 15.8 for zL ¼ 0:3, 0.5, and 0.8,

respectively. Comparing to the results in Sec III C, lmin is
slightly bigger, asC�

l (which contributes to the uncertainty)

increases more rapidly than Ch�
l (the signal we are after)

would as the source redshift increases from zS to z.

FIG. 18. Angular power spectra of the galaxy-galaxy correlation Ch
l (thick dotted lines), the galaxy-convergence cross correlation

Ch�
l (thick solid lines), and the convergence-convergence correlation C�

l (thick dashed lines) for the Gaussian initial condition (fNL ¼
0). The four panels show the same populations of galaxies and clusters of galaxies as in Fig. 15. We also show the galaxy shot noise
1=nL (thin dotted lines) as well as the lens reconstruction noise N�

l (think dashed lines) for NL ¼ 106 and N�
l ’ 6
 10�8 sr�1 (for

multipoles much smaller than that corresponds to the beam size of 40). We find 1=nL � Ch
l and N�

l � C�
l for l & 100.

FIG. 19. Same as Fig. 15, but with 1-sigma uncertainty due to the shape noise of source galaxies [filled box, Eq. (29)] and full error
budget [empty box, diagonal of Eq. (27)] including the cosmic variance. We use the multipole bins of size �l ¼ 0:23l. For uncertainty
of CMB lensing reconstruction, we assume the nearly-perfect reference experiment of Hu and Okamoto [58]: white detector noise
�T ¼ �P=

ffiffiffi
2

p ¼ 1 Karcmin, and FWHM of the beam � ¼ 40.
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Figure 19 shows the expected 1-� uncertainties of the
angular power spectrum of the galaxy-CMB lensing cross
correlation, on top of the predicted Gaussian/non-Gaussian
signals with five different values of non-Gaussianity pa-
rameters: fNL ¼ 0, �50, �100. We also show the 1-�
uncertainties without the cosmic variance due to the cos-
mic shear. Once again, it would be difficult to measure the
effects of fNL from a single lens redshift, but combining

many slices would help measure fNL from the galaxy-
CMB lensing cross correlation.
What about using even higher-z lens galaxies? As shown

in Fig. 20, for higher-z populations (with zL ¼ 2–5) the
galaxy-galaxy power spectra are about the same as the shot
noise levels. This is true only for the assumed number of
lenses NL ¼ 106 (over the full-sky), which is somewhat
arbitrary. IncreasingNL will help reduce the noise, but only

FIG. 20. Same as Fig. 18, but for the high redshift lens galaxies shown in Fig. 16. For these populations (and with NL ¼ 106), the
shot noise is about the same as the galaxy power spectrum, i.e., Ch

l ’ 1=nL.

FIG. 21. Same as Fig. 19, but for the high redshift lens galaxies shown in Fig. 16.
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up to a factor of
ffiffiffi
2

p
. For populations with Ch

l ’ 1=nL, we
can approximate the variance as

Var ðCh�
l Þ ¼ ðCh

l þ 1=nLÞC�
l

ð2lþ 1Þ�lfsky ’ 2Ch
l C

�
l

ð2lþ 1Þ�lfsky : (43)

Thus, we find Ch�
l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCh�

l Þ
q

* 1 when

l *
1

rl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�l=lÞfsky

q : (44)

The maximum cross-correlation coefficients are 0.091,
0.084, 0.078, and 0.073 for zL ¼ 2, 3, 4, and 5, respectively.
The estimated lmax is then 29 (zL ¼ 2), 34 (zL ¼ 3), 38
(zL ¼ 4), and 42 (zL ¼ 5).

In Fig. 21, we compare the expected 1-� uncertainties
with the predicted signals from high-z lens galaxies with
fNL ¼ 0, �50, and �100. Comparing this result with that
in Fig. 19, we conclude that higher-z lens populations do
provide a better chance of finding the effects of fNL than
lower-z lenses, although we would still need to combine
many lens redshift slices. In particular, using higher-z
lenses, we can find non-Gaussian effects at higher and
higher multipoles which are easier to measure; thus,
high-z galaxies correlated with CMB lensing offers a yet
another nice probe of the local-type primordial non-
Gaussianity.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the galaxy-galaxy lensing
and galaxy-CMB lensing cross-correlation functions. We
have focused on large scales, typically larger than 100 Mpc
at the lens redshift. While current measurements have high
signal-to-noise ratios on much smaller scales, we believe
that future surveys will enable detection of interesting
physical effects in the large-scale, linear regime.

We derive the full covariance matrix for galaxy-galaxy
lensing, including the cosmic variance due to the clustering
of lenses and to cosmic shear [Eq. (18)]. We use the linear
bias model to provide the halo-mass and halo-halo corre-
lations needed for this calculation. We present results for
the covariance of the mean tangential shear measurement
as a function of angular separations, as well as for the
harmonic space halo-convergence cross-power spectrum.
Our calculations show that the errors in ��ðRÞ are domi-
nated by the cosmic variance term for R * 50h�1 Mpc
(see Fig. 6). Similarly, the errors in the halo-convergence
cross-power spectra Ch�

l are dominated by the cosmic

variance term at l & 100 (see Fig. 19).
For Gaussian initial conditions, we show that the bar-

yonic effects in the matter power spectrum (often called
baryon acoustic oscillations) produce a shoulder in the
galaxy-galaxy lensing correlation (i.e., the mean tangential
shears)��ðRÞ at R� 110h�1 Mpc (see Fig. 3). This effect
should be easy to measure from the next-generation lensing
surveys by combining ��ðRÞ from multiple lens redshift
slices.

We consider the prospects of detecting primordial non-
Gaussianity of the local form, characterized by the fNL
parameter. We have found that the scale-dependent bias
from the local-form non-Gaussianity with fNL ¼ �50
modifies ��ðRÞ at the level of 10–20% at R�
300h�1 Mpc (depending on b1 and zL; see Fig. 5) (see
Fig. 4). The modification grows rapidly toward larger
scales, in proportion to R2. High-z galaxies at, e.g., z *
2, cross correlated with CMB can be used to find the effects
of fNL in the galaxy-convergence power spectrum Ch�

l .

While the effects are probably too small to see from a
single lens redshift (see Fig. 21), many slices can be com-
bined to beat down the cosmic variance errors. Exactly
how many slices are necessary, or what is the optimal
strategy to measure fNL from the galaxy-CMB lensing
signal requires a more detailed study that incorporates
the survey strategy for specific galaxy and lens surveys.
We emphasize that, while the two-point statistics of

shear fields are not sensitive to primordial non-
Gaussianity, the two-point statistics correlating shear fields
with density peaks (i.e., galaxies and clusters of galaxies)
are sensitive due to the strong scale dependence of halo
bias on large scales.
Finally, we note that one can also measure the effects of

fNL on the halo power spectrum, Ch
l . For example, Ch

l that

would be measured from LSST can be used to probe fNL �
1 [67]; thus, we would expect Ch

l to be more powerful than

the lens cross-correlation statistics we studied here.
However, a combination of the two measurements would
provide useful cross-checks, as galaxy clustering and
galaxy-lensing correlations are affected by very different
systematics.
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APPENDIX A: DERIVATION OF THE MEAN
TANGENTIAL SHEAR

One may write down the observed tangential shears at a
given distance from a lens halo � averaged over NL lens
halos as
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�h
t ð�Þ ¼ 1

NL

Z
d2n̂

�XNL

i

�Dðn̂� n̂iÞ
�
�tðn̂þ �Þ; (A1)

where �D is the delta function, and i denotes the location of
lens halos. Note that we have not azimuthally averaged the
tangential shears yet. The ensemble average of �h

t yields
the number-weighted average of the tangential shear:

h�h
t ið�Þ ¼ 1

NL

Z
d2n̂hnLðn̂Þ�tðn̂þ �Þi; (A2)

where nLðn̂Þ is the surface number density of lens halos at a
given location on the sky n̂. Expanding it into the pertur-
bation nLðn̂Þ ¼ �nL½1þ �hðn̂Þ�, we obtain

h�h
t ið�Þ ¼ 1

fsky

Z d2n̂

4�
h�hðn̂Þ�tðn̂þ �Þi; (A3)

where fsky � NL=ð4� �nLÞ is a fraction of sky covered by

the observation. From statistical isotropy of the Universe,
h�hðn̂Þ�tðn̂þ �Þi does not depend on n̂, and thus the
integral over n̂ simply gives 4�fsky. Expanding �h and

�t in Fourier space, we obtain

h�h
t ið�Þ ¼ �

Z d2l

ð2�Þ2
d2l0
ð2�Þ2 e

il	n̂eil	ðn̂þ�Þ0


 cos½2ð�� ’Þ�h�hðlÞ�ðlÞi

¼ �
Z d2l

ð2�Þ2 C
h�
l cos½2ð�� ’Þ�e�il	�; 0 (A4)

where we have used h�hðlÞ�ðlÞi ¼ ð2�Þ2Ch�
l �Dðlþ lÞ00.

Finally, we take the azimuthal average of h�h
t ið�Þ to find

the averaged mean tangential shear:

h ��h
t ið�Þ ¼

Z 2�

0

d�

2�
h�h

t ið�Þ

¼ �
Z d2l

ð2�Þ2 C
h�
l

Z 2�

0

d�

2�
cos½2ð�� ’Þ�


 e�il� cosð��’Þ

¼
Z d2l

ð2�Þ2 C
h�
l J2ðl�Þ ¼

Z ldl

2�
Ch�
l J2ðl�Þ: (A5)

This completes the derivation of Eq. (11).

APPENDIX B: DERIVATION OF THE
COVARIANCE MATRIX OF THE MEAN

TANGENTIAL SHEAR

To compute the covariance matrix of the tangential
shears (not yet azimuthally averaged), we first compute

h�h
t ð�Þ�h

t ð�0Þi ¼ 1

N2
L

XNL

ij

Z
d2n̂

Z
d2n̂0h�Dðn̂� n̂iÞ


 �Dðn̂0 � n̂jÞ�tðn̂þ �Þ�tðn̂0 þ �0Þi
¼ 1

N2
L

Z
d2n̂

Z
d2n̂0½�Dðn̂� n̂0Þ


 hnLðn̂Þ�tðn̂þ �Þ�tðn̂0 þ �0Þi
þ hnLðn̂ÞnLðn̂0Þ�tðn̂þ �Þ�tðn̂0 þ �0Þi�:

(B1)

Here, the first term in the square bracket correlates two �t’s
measured relative to the same lens halo (1-halo term), and
the second correlates two �t’s relative to two lens halos (2-
halo term). Again expanding nL into the perturbation
nLðn̂Þ ¼ �nL½1þ �hðn̂Þ�, we obtain

h�tð�Þ�tð�0Þi ¼ 1

fsky

1

NL

Z d2n̂

4�
h�tðn̂þ �Þ�tðn̂þ �0Þi

þ 1

f2sky

Z d2n̂

4�

Z d2n̂0

4�


 ½h�tðn̂þ �Þ�tðn̂0 þ �0Þi
þ h�hðn̂Þ�hðn̂0Þ�tðn̂þ �Þ�tðn̂0 þ �0Þi�:

(B2)

Here, we assume that �h and �t obey Gaussian statistics,
i.e., h�h�t�ti ¼ 0. This approximation is justified even in
the presence of primordial non-Gaussianity, as non-
Gaussianity is weak, and this approximation only affects
the size of error bars. Let us evaluate each term. With �t

expanded in Fourier space, the first term (1-halo term)
becomes

1

NL

1

fsky

Z d2n̂

4�
h�tðn̂þ �Þ�tðn̂þ �0Þi

¼ 1

NL

Z d2l

ð2�Þ2 C
�
l cos½2ð�� ’Þ� cos½2ð�0 � ’Þ�


 eil	ð���0Þ þ �2
�

NLnS
�Dð� � �0Þ; (B3)

where �� is the root mean square shape noise (dimension-

less), and nS is the surface density of source (background)
galaxies that are available for the shear measurement at a
given location. By azimuthally averaging �t, we find

1

NL

Z 2�

0

d�

2�

Z 2�

0

d�0

2�
h�tðn̂þ �Þ�tðn̂þ �0Þi

¼ 1

NL

Z d2l

ð2�Þ2 C
�
l J2ðl�ÞJ2ðl�0Þ þ

�2
�

NLnS

�Dð�� �0Þ
2��

:

(B4)

Here, C�
l is the angular power spectrum of �ðlÞ.
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As for the second term (2-halo term), the first of the second term vanishes, as
R
d2n̂�tðn̂þ �Þ ¼ 0. The remaining

nonvanishing term gives

1

f2sky

Z d2n̂

4�

Z d2n̂0

4�
½h�hðn̂Þ�tðn̂þ �Þih�hðn̂0Þ�tðn̂0 þ �0Þi þ h�hðn̂Þ�tðn̂0 þ �0Þih�hðn̂0Þ�tðn̂þ �Þi

þ h�hðn̂Þ�hðn̂0Þih�tðn̂þ �Þ�tðn̂0 þ �0Þi�

¼ h�h
t ð�Þih�h

t ð�0Þi þ 1

4�fsky

Z d2l

ð2�Þ2 cos½2ð�� ’Þ� cos½2ð�0 � ’Þ�eil	ð���0Þ
�
ðCh�

l Þ2 þ Ch
l

�
C�
l þ

�2
�

nS

��
: (B5)

Here, Ch
l is the angular power spectrum of �hðlÞ. By

azimuthally averaging �t in the above equation, we find

h ��h
t ð�Þih ��h

t ð�0Þi þ 1

4�fsky

Z d2l

ð2�Þ2 J2ðl�ÞJ2ðl�
0Þ



�
ðCh�

l Þ2 þ Ch
l

�
C�
l þ

�2
�

nS

��
; (B6)

where we have used the identity

�Dð�� �0Þ
2��

¼
Z ldl

2�
J2ðl�ÞJ2ðl�0Þ: (B7)

Collecting both the 1-halo and 2-halo terms, we finally
obtain the covariance matrix of the azimuthally-averaged
mean tangential shear:

h ��h
t ð�Þ ��h

t ð�0Þi � h ��h
t ð�Þih ��h

t ð�0Þi
¼ 1

4�fsky

Z ldl

2�
J2ðl�ÞJ2ðl�0Þ



�
ðCh�

l Þ2 þ
�
Ch
l þ

1

nL

��
C�
l þ

�2
�

nS

��
:

This completes the derivation of Eq. (18).

APPENDIX C: ON THE ACCURACY OF LIMBER’S
APPROXIMATION

Throughout this paper we have repeatedly used
Limber’s approximation in order to relate the angular cor-
relation function to the corresponding three-dimensional
power spectrum. In general, Limber’s approximation is
known to be accurate only for small angular scales, and
only for the quantities which are integrated over a broad
range of redshift.

However, the situations we have considered in this paper
sometimes violate both of the conditions above: 1) We
correlate the convergence field with galaxies within a
very thin redshift slice, and 2) the non-Gaussianity signal
we study in this paper appears only on very large scales.

Then, how accurate is Limber’s approximation in this
case? In this appendix, we shall study in detail the validity
and limitation of Limber’s approximation, by comparing
the main results of the paper to the result of exact
calculations.

Consider a quantity xiðn̂Þ, which is projected on the sky.
Here, n̂ is the unit vector pointing toward a given direction
on the sky. This quantity is related to the three-dimensional
quantity siðr; zÞ by a projection kernel WiðzÞ as

xiðn̂Þ ¼
Z

dzWiðzÞsi½dAðzÞn̂; z�: (C1)

Throughout this appendix, we use dAðzÞ to denote dAð0; zÞ.
Fourier transforming siðrÞ, one obtains

si½dAðzÞn̂; zÞ� ¼
Z d3k

ð2�Þ3 siðk; zÞe
ik	n̂dAðzÞ

¼ 4�
X
l;m

il
Z d3k

ð2�Þ3 siðk; zÞjl½kdAðzÞ�


 Y
lmðk̂ÞYlmðn̂Þ: (C2)

In the third line, we have used Rayleigh’s formula:

eik	n̂r ¼ 4�
X
l;m

iljlðkrÞY
lmðk̂ÞYlmðn̂Þ:

By using Eq. (C2), we rewrite Eq. (C1) as

xiðn̂Þ ¼ 4�
X
l;m

il
Z

dzWiðzÞ



Z d3k

ð2�Þ3 siðk; zÞjl½kdAðzÞ�Y

lmðk̂ÞYlmðn̂Þ:

(C3)

Therefore, the coefficients of the spherical harmonics de-
composition of xiðn̂Þ, axilm, becomes

axilm ¼ 4�il
Z

dzWiðzÞ
Z d3k

ð2�Þ3 siðk; zÞjl½kdAðzÞ�Y

lmðk̂Þ:

(C4)

We calculate the angular power spectrumC
xixj
l by taking an

ensemble average of haxilmaxjlm i as
C
xixj
l � haxilmaxjlm i

¼ ð4�Þ2
Z

dzWiðzÞ
Z

dz0Wjðz0Þ
Z d3k

ð2�Þ3

 Psisjðk; z; z0Þjl½kdAðzÞ�jl½kdAðz0Þ�Y

lmðk̂ÞYlmðk̂Þ;
(C5)
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where we have used the definition of the power spectrum:

hsiðk; zÞsj ðk0; zÞi � ð2�Þ3�ðk� k0ÞPsisjðk; z; z0Þ:
Now, by assuming statistical isotropy of the universe, we

write Psisjðk; z; z0Þ ¼ Psisjðk; z; z0Þ, and do the angular in-

tegration of k̂ by using the orthonormality condition of
spherical harmonics:Z

dk̂Ylmðk̂ÞY
lmðk̂Þ ¼ 1:

We then obtain the angular power spectrum given by

C
xixj
l ¼

Z
dzWiðzÞ

Z
dz0Wjðz0Þ



�
2

�

Z
k2dkPsisjðk; z; z0Þjl½kdAðzÞ�jl½kdAðz0Þ�

�
:

(C6)

This is the exact relation.
What determines the form of WiðzÞ? For a projected

galaxy distribution projected on the sky, this kernel is
simply a normalized galaxy distribution function in red-
shift space. In this paper, we consider the delta functionlike
distribution, i.e.,

WgðzÞ ¼ �Dðz� zLÞ: (C7)

Using Eq. (C6) with the delta function kernel above yields
Eq. (36):

Ch
l ¼ 2

�

Z
dkk2Pgðk; zLÞj2l ½kdAðzLÞ�: (C8)

Again, this is still the exact result. As the form ofWgðzÞ we
have considered here (i.e., a delta function) is a sharply
peaked function, we cannot use Limber’s approximation
given below. This is the reason why we have used the exact
result for Ch

l .

In order to get the expression for Limber’s approxima-
tion, we assume that PsisjðkÞ is a slowly-varying function of
k. Then, by using the identity

2

�

Z
k2dkjlðkrÞjlðkr0Þ ¼ �Dðr� r0Þ

r2
; (C9)

we approximate the k integral of Eq. (C6) as

2

�

Z
k2dkPsisjðkÞjlðkrÞjlðkr0Þ

� �Dðr� r0Þ
r2

Psisj

�
k ¼ lþ 1=2

r

�
: (C10)

By using this approximation, we finally get

C
xixj
l �

Z
dzWiðzÞWjðzÞ HðzÞ

d2AðzÞ
Psisj

�
k ¼ lþ 1=2

r
; z

�
;

(C11)

which is the result known as Limber’s approximation.
One important application of Limber’s approximation is

the statistics involving weak gravitational lensing. The

lensing kernel for the convergence field W�ðzÞ can be
calculated by integrating the lens equation:

W�ðzÞ ¼ 
0

�cðz; zSÞHðzÞ ; (C12)

where �cðz; zSÞ is the critical surface density defined in
Eq. (16). The exact result for the galaxy-convergence
angular cross-power spectrum is

Ch�
l ðzLÞ ¼ 2

�

Z zS

0
dz


0

�cðz; zSÞHðzÞ



Z
dkk2Phmðk; zL; zÞjl½kdAðzLÞ�jl½kdAðzÞ�;

(C13)

FIG. 22. Top: Convergence-convergence angular power
spectrum from two different methods: the exact calculation
[Eq. (C14), symbols] and Limber’s approximation [Eq. (35),
solid lines]. Bottom: Fractional differences between Limber’s
approximation and the exact integration. Symbols are the same
as the top panel. Grey symbols show the absolute values of
negative values.

FIG. 23. Same as Fig. 22, but for the galaxy-convergence cross
angular power spectrum with fNL ¼ 0 and b1 ¼ 1.
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and the exact result for the convergence-convergence an-
gular power spectrum is

C�
l ðzSÞ ¼

2

�

Z zS

0
dz

Z zS

0
dz0


2
0

�cðz; zSÞHðzÞ�cðz0; zSÞHðz0Þ



Z
dkk2Pmðk; z; z0Þjl½kdAðzÞ�jl½kdAðz0Þ�:

(C14)

First, we compare the exact convergence-convergence
angular power spectrum to Limber’s approximation.
Figure 22 shows that Limber’s approximation works very
well for all four source redshifts we study in the paper:

FIG. 24. Same as Fig. 22, but for the non-Gaussian correction
(i.e., the term proportional to �bðkÞ) to the galaxy-convergence
cross angular power spectrum. We show the corrections with
fNL ¼ 1 and b1 ¼ 2.

FIG. 25. Same as Fig. 23, but for the galaxy-CMB lensing.

FIG. 26. Same as Fig. 24, but for the galaxy-CMB lensing.

FIG. 27. Top: Same as Fig. 3, but also showing the exact result
[Eq. (C13), thick lines] on top of the result from Limber’s
approximation [Eq. (32), thin lines]. Bottom: Fractional differ-
ence of Limber’s approximation relative to the exact result.

FIG. 28. Same as Fig. 27, but for larger R. Thick lines are the
results of the exact integration, while the thin lines are Limber’s
approximation. The Limber approximation over predicts ��ðRÞ
for large R, but the error is at most 5% for R < 500h�1 Mpc. The
error is the largest for the lowest zL, as a physical separation R at
a lower redshift corresponds to a larger angular separation on the
sky.
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zS ¼ 0:65, 1.19, 2.25, and 1089.0. For l > 10, the error
caused by Limber’s approximation is always much smaller
than 1%.

Then, we compare the galaxy-convergence cross angular
power spectra. Figures 23 and 24 show the comparison
between the exact galaxy-convergence cross-power spec-
trum [Eq. (C13), symbols] and their Limber approximation
[Eq. (32), solid lines] for three galaxy-galaxy lensing cases
we study in Sec. II: ðzL; zSÞ ¼ ð0:3; 0:65Þ, (0.5, 1.19), and
(0.8, 2.25).

For the Gaussian term (Fig. 23), Limber’s approxima-
tion is accurate at l > 10 with the errors less than 1%. On
the other hand, Limber’s approximation to the non-

Gaussian correction term (Fig. 24) has a sizable error, at
the level of 10%, at l� 10. The error goes down to the 1%
level only at l� 100. One needs to keep this in mind when
comparing Limber’s approximation with observations. We
find that Limber’s approximation underpredicts the
Gaussian term at l & 20, while it overpredicts the non-
Gaussian corrections at all multipoles.
The story is basically the same for the galaxy-CMB

lensing cross-power spectrum. Figure 25 (Gaussian term)
and Fig. 26 (non-Gaussian correction) show the compari-
son between the exact galaxy-convergence cross-power
spectrum [Eq. (C13), solid lines] and their Limber approxi-
mation [Eq. (32), dashed lines] for seven lens redshifts we
study in Sec. IV: zL ¼ 0:3, 0.5, 0.8, 2, 3, 4, and 5. Again, for
small scales l > 10 Limber’s approximation works better
than 1% for the Gaussian term, while it overpredicts the
non-Gaussian correction at the level of 10% at l� 10 and
1% at l� 100.
What about the effect on the mean tangential shear

��ðRÞ? Figure 27 compares the Gaussian term of ��ðRÞ
from the exact integration and that from Limber’s approxi-
mation. On the top panel of Fig. 27, we show the baryonic
feature computed with Limber’s approximation (thin lines,
the same as those in Fig. 3) as well as that computed with
the exact integration (thick lines). They are indistinguish-
able by eye. The bottom panel shows the fractional differ-
ences between the two. We find that Limber’s ap-
proximation is better than 0.5% for R< 180h�1 Mpc;
thus, the baryonic feature in �� is not an artifact caused
by Limber’s approximation.
However, Limber’s approximation becomes worse and

worse as we go to larger R. Figure 28 shows �� on large
scales. For the lens redshifts that we have studied here, the
error is at most 5% for R< 500h�1 Mpc, and the error is

FIG. 29. Fractional differences in the non-Gaussian correction
terms, ��nG, from Limber’s approximation and the exact inte-
gration. Using Limber’s approximation, we overpredict the non-
Gaussian correction by�20% at R ¼ 300h�1 Mpc for zL ¼ 0:3.

FIG. 30. Same as Fig. 4, but with the exact integration instead of Limber’s approximation.
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the largest for the lowest zL, as a given R at a lower redshift
corresponds to a larger angular separation on the sky.

While Limber’s approximation underpredicts the
Gaussian term on large scales, it overpredicts the non-
Gaussian correction terms. Figure 29 shows the fractional
differences of the non-Gaussian correction terms, ��nG,
between Limber’s approximation and the exact calculation
as a function of separation R for three lens redshifts: zL ¼
0:3, 0.5, and 0.8. This figure shows that the error caused by
Limber’s approximation can be substantial on ��nG.

As Limber’s approximation to ��ðRÞ can be quite in-
accurate on very large scales, we show the exact calcula-
tions of ��ðRÞ in Fig. 30. (Limber’s approximation is
given in Fig. 4.)
Finally, we note that the definition of the tangential shear

we have used [Eq. (4)] is valid only on the flat sky (as noted
in the footnote there), and thus the prediction for �� on
very large scales probably needs to be revisited with the
exact definition of the tangential shears on the full sky
using the spin-2 harmonics. This is beyond of the scope of
our paper.
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and K.M. Górski, Astrophys. J. 566, 19 (2002).
[19] E. Komatsu, A. Kogut, M. R. Nolta, C. L. Bennett, M.

Halpern, G. Hinshaw, N. Jarosik, M. Limon, S. S. Meyer,
L. Page et al., Astrophys. J. Suppl. Ser. 148, 119 (2003).

[20] E. Komatsu, Ph.D. thesis, Tohoku University, 2001, arXiv:
astro-ph/0206039.

[21] T. Okamoto and W. Hu, Phys. Rev. D 66, 063008 (2002).
[22] N. Kogo and E. Komatsu, Phys. Rev. D 73, 083007

(2006).

[23] R. Scoccimarro, E. Sefusatti, and M. Zaldarriaga, Phys.
Rev. D 69, 103513 (2004).

[24] E. Sefusatti and E. Komatsu, Phys. Rev. D 76, 083004
(2007).

[25] D. Jeong and E. Komatsu, Astrophys. J. 703, 1230 (2009).
[26] E. Sefusatti, Phys. Rev. D 80, 123002 (2009).
[27] F. Lucchin and S. Matarrese, Astrophys. J. 330, 535

(1988).
[28] S. Matarrese, L. Verde, and R. Jimenez, Astrophys. J. 541,

10 (2000).
[29] E. Sefusatti, C. Vale, K. Kadota, and J. Frieman,

Astrophys. J. 658, 669 (2007).
[30] M. LoVerde, A. Miller, S. Shandera, and L. Verde, J.

Cosmol. Astropart. Phys. 04 (2008) 014.
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