3,136 research outputs found

    Recent advances in osmotic energy generation via pressure-retarded osmosis (PRO): A review

    Full text link
    © 2015 by the authors. Global energy consumption has been highly dependent on fossil fuels which cause severe climate change and, therefore, the exploration of new technologies to produce effective renewable energy plays an important role in the world. Pressure-retarded osmosis (PRO) is one of the promising candidates to reduce the reliance on fossil fuels by harnessing energy from the salinity gradient between seawater and fresh water. In PRO, water is transported though a semi-permeable membrane from a low-concentrated feed solution to a high-concentrated draw solution. The increased volumetric water flow then runs a hydro-turbine to generate power. PRO technology has rapidly improved in recent years; however, the commercial-scale PRO plant is yet to be developed. In this context, recent developments on the PRO process are reviewed in terms of mathematical models, membrane modules, process designs, numerical works, and fouling and cleaning. In addition, the research requirements to accelerate PRO commercialization are discussed. It is expected that this article can help comprehensively understand the PRO process and thereby provide essential information to activate further research and development

    Automatic eduction and statistical analysis of coherent structures in the wall region of a confine plane

    Get PDF
    This paper describes a vortex detection algorithm used to expose and statistically characterize the coherent flow patterns observable in the velocity vector fields measured by Particle Image Velocimetry (PIV) in the impingement region of air curtains. The philosophy and the architecture of this algorithm are presented. Its strengths and weaknesses are discussed. The results of a parametrical analysis performed to assess the variability of the response of our algorithm to the 3 user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet Reynolds number, based on the initial mean flow velocity U0 and the jet width e, is 14000. The results of a statistical analysis of the size, shape, spatial distribution and energetic content of the coherent eddy structures detected in the impingement region of this test flow are provided. Although many questions remain open, new insights into the way these structures might form, organize and evolve are given. Relevant results provide an original picture of the plane turbulent impinging jet

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    Nosocomial infection in a newborn intensive care unit (NICU), South Korea

    Get PDF
    BACKGROUND: This study aimed to determine the occurrence of nosocomial infections (NIs), including infection rates, main infection sites, and common microorganisms. Patients included in the study were taken from a newborn intensive care unit (NICU), in a hospital in South Korea. METHODS: A retrospective cohort study was performed by reviewing chart. The subjects were 489 neonates who were admitted to the NICU, survived longer than 72 hours, and not transferred to another unit, between Jan. 1. 1995 to Sep. 30, 1999. NIs were identified according to the NNIS definition. Data were analyzed with descriptive statistics. RESULTS: Cumulative incidence rate for NIs was 30.3 neonates out of 100 admissions, with a total of 44.6 infections. The incidence density was average 10.2 neonates and 15.1 infections per 1000 patient days. The most common infections were pneumonia (28%), bloodstream infection (26%), and conjunctivitis (22%). Major pathogens were Gram-positives such as Staphylococcus aureus and coagulase-negative staphylococci. The factors associated with NI was less than 1500 g of birth weight, less than 32 weeks of gestational age, and less than 8 of apgar score. There's no statistical difference in discharge status between two groups, but hospital stay was longer in subjects with nosocomial infection than those without infection. CONCLUSION: Although the distribution of pathogens was similar to previous reports, a high rate of nosocomial infection and in particular conjunctivitis was observed in this study that merits further evaluation

    Determination of Pericardial Adipose Tissue Increases the Prognostic Accuracy of Coronary Artery Calcification for Future Cardiovascular Events

    Get PDF
    Objectives: Pericardial adipose tissue (PAT) is associated with coronary artery plaque accumulation and the incidence of coronary heart disease. We evaluated the possible incremental prognostic value of PAT for future cardiovascular events. Methods: 145 patients (94 males, age 60 10 years) with stable coronary artery disease underwent coronary artery calcification (CAC) scanning in a multislice CT scanner, and the volume of pericardial fat was measured. Mean observation time was 5.4 years. Results: 34 patients experienced a severe cardiac event. They had a significantly higher CAC score (1,708 +/- 2,269 vs. 538 +/- 1,150, p 400, 3.5 (1.9-5.4; p = 0.007) for scores > 800 and 5.9 (3.7-7.8; p = 0.005) for scores > 1,600. When additionally a PAT volume > 200 cm(3) was determined, there was a significant increase in the event rate and relative risk. We calculated a relative risk of 2.9 (1.9-4.2; p = 0.01) for scores > 400, 4.0 (2.1-5.0; p = 0.006) for scores > 800 and 7.1 (4.1-10.2; p = 0.005) for scores > 1,600. Conclusions:The additional determination of PAT increases the predictive power of CAC for future cardiovascular events. PAT might therefore be used as a further parameter for risk stratification. Copyright (C) 2012 S. Karger AG, Base

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0≤n+nˉ≤D0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D−1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Universality and exactness of Schrodinger geometries in string and M-theory

    Full text link
    We propose an organizing principle for classifying and constructing Schrodinger-invariant solutions within string theory and M-theory, based on the idea that such solutions represent nonlinear completions of linearized vector and graviton Kaluza-Klein excitations of AdS compactifications. A crucial simplification, derived from the symmetry of AdS, is that the nonlinearities appear only quadratically. Accordingly, every AdS vacuum admits infinite families of Schrodinger deformations parameterized by the dynamical exponent z. We exhibit the ease of finding these solutions by presenting three new constructions: two from M5 branes, both wrapped and extended, and one from the D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a CFT by a null vector operator can lead to nonzero beta-functions for spin-2 operators; however, symmetry restricts them to be at most quadratic in couplings. This point of view also allows us to easily prove nonrenormalization theorems: for any Sch(z) solution of two-derivative supergravity constructed in the above manner, z is uncorrected to all orders in higher derivative corrections if the deforming KK mode lies in a short multiplet of an AdS supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with 4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight change in interpretation in section 2.3, new Schrodinger and Lifshitz solutions included; v3, clarifications in sections 2 and 3 regarding existence of solutions and multi-trace operator
    • …
    corecore