1,199 research outputs found

    A one-dimensional model for the growth of CdTe quantum dots on Si substrates

    Full text link
    Recent experiments involving CdTe films grown on Si(111) substrates by hot wall epitaxy revealed features not previously observed [S. O. Ferreira \textit{et al.}, J. Appl. Phys. \textbf{93}, 1195 (2003)]. This system, which follows the Volmer-Weber growth mode with nucleation of isolated 3D islands for less than one monolayer of evaporated material, was described by a peculiar behavior of the quantum dot (QD) size distributions. In this work, we proposed a kinetic deposition model to reproduce these new features. The model, which includes thermally activated diffusion and evaporation of CdTe, qualitatively reproduced the experimental QD size distributions. Moreover, the model predicts a transition from Stranski-Krastanow growth mode at lower temperatures to Volmer-Weber growth mode at higher ones characterized through the QD width distributions.Comment: to appear in Physics Letters

    The most vagile host as the main determinant of population connectivity in marine macroparasites

    Get PDF
    Although molecular ecology of macroparasites is still in its infancy, general patterns are beginning to emerge, e.g. that the most vagile host in a complex life cycle is the main determinantof the population genetic structure of their parasites. This insight stems from the observation that populations of parasites with only freshwater hosts are more structured than those with terrestrial or airborne hosts. Until now, the same has not been tested for marine systems, where, in theory, a fully marine life cycle might sustain high dispersal rates because of the absence of Obvious physical barriers in the sea. Here, we tested whether a marine trematode parasite that utilises migratory birds exhibited weaker population genetic structure than those whose life cycle utilises marine fish as the vagile host. Part of the mitochondrial cytochrome c oxidase 1 (COI) gene wassequenced from individual sporocysts from populations along the Atlantic coast of Europe and North Africa. Strong population structure (Φ-ST = 0.25, p < 0.0001) was found in the fully marinetrematode Bucephalus minimus (hosted by fish), while no significant structure (Φ-ST = 0.015, p = 0.19257) was detected in Gymnophallus choledochus (hosted by birds). However, demographicmodels indicate recent colonisation rather than high dispersal as an alternative explanation of the low levels of structure observed in G. choledochus. Our study is the first to identify significant genetic population structure in a marine autogenic parasite, suggesting that connectivity between populations of marine parasites can be limited despite the general potential for high dispersal of their hosts in the marine environment

    On the requirements to establish a European radiological preparedness for malicious airborne dispersion scenarios

    Get PDF
    European computerised decision support systems are currently targeted for large accidental atmospheric contaminant releases from nuclear installations. To make these systems applicable also for malicious dispersion events, such as ‘dirty bomb’ blasts, a series of modifications and extensions are necessary. Also European decision support handbooks need supplementary sections to cover the features of these types of scenarios. An overview is given of the requirements

    Testing the SOC hypothesis for the magnetosphere

    Get PDF
    As noted by Chang, the hypothesis of Self-Organised Criticality provides a theoretical framework in which the low dimensionality seen in magnetospheric indices can be combined with the scaling seen in their power spectra and the recently-observed plasma bursty bulk flows. As such, it has considerable appeal, describing the aspects of the magnetospheric fuelling:storage:release cycle which are generic to slowly-driven, interaction-dominated, thresholded systems rather than unique to the magnetosphere. In consequence, several recent numerical "sandpile" algorithms have been used with a view to comparison with magnetospheric observables. However, demonstration of SOC in the magnetosphere will require further work in the definition of a set of observable properties which are the unique "fingerprint" of SOC. This is because, for example, a scale-free power spectrum admits several possible explanations other than SOC. A more subtle problem is important for both simulations and data analysis when dealing with multiscale and hence broadband phenomena such as SOC. This is that finite length systems such as the magnetosphere or magnetotail will by definition give information over a small range of orders of magnitude, and so scaling will tend to be narrowband. Here we develop a simple framework in which previous descriptions of magnetospheric dynamics can be described and contrasted. We then review existing observations which are indicative of SOC, and ask if they are sufficient to demonstrate it unambiguously, and if not, what new observations need to be made?Comment: 29 pages, 0 figures. Based on invited talk at Spring American Geophysical Union Meeting, 1999. Journal of Atmospheric and Solar Terrestrial Physics, in pres

    Multidisciplinary Design Optimization of an Extreme Aspect Ration HALE UAV

    Get PDF
    Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. The central goal of this research was the development of a multidisciplinary tool for analysis, design, and optimization of HALE UAVs, facilitating the study of a novel configuration concept. Applying design ideas stemming from a unique WWII-era project, a pinned wing HALE aircraft would employ self-supporting wing segments assembled into one overall flying wing. When wrapped in an optimization routine, the integrated design environment shows potential for a 17.3% reduction in weight when wing thickness to chord ratio, aspect ratio, wing loading, and power to weight ratio are included as optimizer-controlled design variables. Investigation of applying the sustained day/night mission requirement and improved technology factors to the design shows that there are potential benefits associated with a segmented or pinned wing. As expected, wing structural weight is reduced, but benefits diminish as higher numbers of wing segments are considered. For an aircraft consisting of six wing segments, a maximum of 14.2% reduction in gross weight over an advanced technology optimal baseline is predicted

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. II: spin-1 particles

    Get PDF
    The present works complements and expands a previous one, focused on the emission of scalar fields by a (4+n)-dimensional rotating black hole on the brane, by studying the emission of gauge fields on the brane from a similar black hole. A comprehensive analysis of the particle, energy and angular momentum emission rates is undertaken, for arbitrary angular momentum of the black hole and dimensionality of spacetime. Our analysis reveals the existence of a number of distinct features associated with the emission of spin-1 fields from a rotating black hole on the brane, such as the behaviour and magnitude of the different emission rates, the angular distribution of particles and energy, the relative enhancement compared to the scalar fields, and the magnitude of the superradiance effect. Apart from their theoretical interest, these features can comprise clear signatures of the emission of Hawking radiation from a brane-world black hole during its spin-down phase upon successful detection of this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    The nuclear energy density functional formalism

    Full text link
    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g,g]E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\it mathematically} meaningful fashion even if E[g,g]E[g',g] does {\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
    corecore