313 research outputs found

    Rationalising the difference in crystallisability of two sulflowers using efficient in silico methods

    Get PDF
    The molecular structures of the first and second generation sulflowers, sulflower and persulfurated coronene (PSC), are remarkably similar: carbon ring structures decorated with sulfur atoms, without any additional moiety

    Reflexive and volitional saccadic eye movements and their changes in age and progressive supranuclear palsy

    Get PDF
    BACKGROUND AND OBJECTIVES: Saccades, rapid movements of the eyes towards a visual or remembered target, are useful in understanding the healthy brain and the pathology of neurological conditions such as progressive supranuclear palsy (PSP). We set out to investigate the parameters of horizontal reflexive and volitional saccades, both visually guided and memory-guided, over a 1 min epoch in healthy individuals and PSP patients. METHODS: An experimental paradigm tested reflexive, volitional visually guided, and volitional memory-guided saccades in young healthy controls (n = 14; 20-31 years), PSP patients (n = 11; 46-75 years) and older age-matched healthy controls (n = 6; 56-71 years). The accuracy and velocity of saccades was recorded using an EyeBrain T2® video eye tracker and analyses performed using the MyEyeAnalysis® software. Two-way analysis of variance (ANOVA) was used to identify significant effects (p < 0.01) between young and older controls to investigate the effects of ageing upon saccades, and between PSP patients and age-matched controls to study the effects of PSP upon saccades. RESULTS: In both healthy individuals and PSP patients, volitional saccades are slower and less accurate than reflexive saccades. In PSP patients, accuracy is lower across all saccade types compared to age-matched controls, but velocity is lower only for reflexive saccades. Crucially, there is no change in accuracy or velocity of consecutive saccades over short (one-minute) timescales in controls or PSP patients. CONCLUSIONS: Velocity and accuracy of saccades in PSP does not decrease over one-minute timescales, contrary to that previously observed in Parkinson's Disease (PD), suggesting a potential clinical biomarker for the distinction of PSP from PD

    Human-specific histone methylation signatures at transcription start sites in prefrontal neurons

    Get PDF
    Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans

    Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives

    Get PDF
    Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; EspañaFil: Jussara, Barale. Università di Torino; ItaliaFil: Baricco, Marcello. Università di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudáfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemani

    Impact of seasonal variation, age and smoking status on human semen parameters: The Massachusetts General Hospital experience

    Get PDF
    BACKGROUND: To investigate the relationship of human semen parameters with season, age and smoking status. METHODS: The present study used data from subjects recruited into an ongoing cross-sectional study on the relationship between environmental agents and semen characteristics. Our population consisted of 306 patients who presented to the Vincent Memorial Andrology Laboratory of Massachusetts General Hospital for semen evaluation. Sperm concentration and motility were measured with computer aided sperm analysis (CASA). Sperm morphology was scored using Tygerberg Kruger strict criteria. Regression analyses were used to investigate the relationships between semen parameters and season, age and smoking status, adjusting for abstinence interval. RESULTS: Sperm concentration in the spring was significantly higher than in winter, fall and summer (p < 0.05). There was suggestive evidence of higher sperm motility and percent of sperm with normal morphology in the spring than in the other seasons. There were no statistically significant relationships between semen parameters and smoking status, though current smokers tended to have lower sperm concentration. We also did not find a statistically significant relationship between age and semen parameters. CONCLUSIONS: We found seasonal variations in sperm concentration and suggestive evidence of seasonal variation in sperm motility and percent sperm with normal morphology. Although smoking status was not a significant predictor of semen parameters, this may have been due to the small number of current smokers in the study

    Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8

    Get PDF
    53BP1 is a well-known mediator of the cellular response to DNA damage. Two alternative mechanisms have been proposed to explain 53BP1’s interaction with DNA double-strand breaks (DSBs), one by binding to methylated histones and the other via an RNF8 E3 ligase–dependent ubiquitylation pathway. The formation of RNF8 and 53BP1 irradiation-induced foci are both dependent on histone H2AX. To evaluate the contribution of the RNF8-dependent pathway to 53BP1 function, we generated RNF8 knockout mice. We report that RNF8 deficiency results in defective class switch recombination (CSR) and accumulation of unresolved immunoglobulin heavy chain–associated DSBs. The CSR DSB repair defect is milder than that observed in the absence of 53BP1 but similar to that found in H2AX−/− mice. Moreover, similar to H2AX but different from 53BP1 deficiency, RNF8−/− males are sterile, and this is associated with defective ubiquitylation of the XY chromatin. Combined loss of H2AX and RNF8 does not cause further impairment in CSR, demonstrating that the two genes function epistatically. Importantly, although 53BP1 foci formation is RNF8 dependent, its binding to chromatin is preserved in the absence of RNF8. This suggests a two-step mechanism for 53BP1 association with chromatin in which constitutive loading is dependent on interactions with methylated histones, whereas DNA damage–inducible RNF8-dependent ubiquitylation allows its accumulation at damaged chromatin

    Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    Get PDF
    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering

    AMPA Receptor Activation Causes Silencing of AMPA Receptor-Mediated Synaptic Transmission in the Developing Hippocampus

    Get PDF
    Agonist-induced internalization of transmembrane receptors is a widespread biological phenomenon that also may serve as a mechanism for synaptic plasticity. Here we show that the agonist AMPA causes a depression of AMPA receptor (AMPAR) signaling at glutamate synapses in the CA1 region of the hippocampus in slices from developing, but not from mature, rats. This developmentally restricted agonist-induced synaptic depression is expressed as a total loss of AMPAR signaling, without affecting NMDA receptor (NMDAR) signaling, in a large proportion of the developing synapses, thus creating AMPAR silent synapses. The AMPA-induced AMPAR silencing is induced independently of activation of mGluRs and NMDARs, and it mimics and occludes stimulus-induced depression, suggesting that this latter form of synaptic plasticity is expressed as agonist-induced removal of AMPARs. Induction of long-term potentiation (LTP) rendered the developing synapses resistant to the AMPA-induced depression, indicating that LTP contributes to the maturation-related increased stability of these synapses. Our study shows that agonist binding to AMPARs is a sufficient triggering stimulus for the creation of AMPAR silent synapses at developing glutamate synapses

    Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    Get PDF
    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain
    corecore