110 research outputs found

    Covariance and correlation analysis of resting state functional magnetic resonance imaging data acquired in a clinical trial of mindfulness-based stress reduction and exercise in older individuals

    Get PDF
    We describe and apply novel methodology for whole-brain analysis of resting state fMRI functional connectivity data, combining conventional multi-channel Pearson correlation with covariance analysis. Unlike correlation, covariance analysis preserves signal amplitude information, which feature of fMRI time series may carry physiological significance. Additionally, we demonstrate that dimensionality reduction of the fMRI data offers several computational advantages including projection onto a space of manageable dimension, enabling linear operations on functional connectivity measures and exclusion of variance unrelated to resting state network structure. We show that group-averaged, dimensionality reduced, covariance and correlation matrices are related, to reasonable approximation, by a single scalar factor. We apply this methodology to the analysis of a large, resting state fMRI data set acquired in a prospective, controlled study of mindfulness training and exercise in older, sedentary participants at risk for developing cognitive decline. Results show marginally significant effects of both mindfulness training and exercise in both covariance and correlation measures of functional connectivity

    Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water?

    Get PDF
    Many of the highest-performing polymer photocatalysts for sacrificial hydrogen evolution from water have contained dibenzo[b,d]thiophene sulfone units in their polymer backbones. However, the reasons behind the dominance of this building block are not well understood. We study films, dispersions, and solutions of a new set of solution-processable materials, where the sulfone content is systematically controlled, to understand how the sulfone unit affects the three key processes involved in photocatalytic hydrogen generation in this system: light absorption; transfer of the photogenerated hole to the hole scavenger triethylamine (TEA); and transfer of the photogenerated electron to the palladium metal co-catalyst that remains in the polymer from synthesis. Transient absorption spectroscopy and electrochemical measurements, combined with molecular dynamics and density functional theory simulations, show that the sulfone unit has two primary effects. On the picosecond timescale, it dictates the thermodynamics of hole transfer out of the polymer. The sulfone unit attracts water molecules such that the average permittivity experienced by the solvated polymer is increased. We show that TEA oxidation is only thermodynamically favorable above a certain permittivity threshold. On the microsecond timescale, we present experimental evidence that the sulfone unit acts as the electron transfer site out of the polymer, with the kinetics of electron extraction to palladium dictated by the ratio of photogenerated electrons to the number of sulfone units. For the highest-performing, sulfone-rich material, hydrogen evolution seems to be limited by the photogeneration rate of electrons rather than their extraction from the polymer

    Seeing the way: visual sociology and the distance runner's perspective

    Get PDF
    Employing visual and autoethnographic data from a two‐year research project on distance runners, this article seeks to examine the activity of seeing in relation to the activity of distance running. One of its methodological aims is to develop the linkage between visual and autoethnographic data in combining an observation‐based narrative and sociological analysis with photographs. This combination aims to convey to the reader not only some of the specific subcultural knowledge and particular ways of seeing, but also something of the runner's embodied feelings and experience of momentum en route. Via the combination of narrative and photographs we seek a more effective way of communicating just how distance runners see and experience their training terrain. The importance of subjecting mundane everyday practices to detailed sociological analysis has been highlighted by many sociologists, including those of an ethnomethodological perspective. Indeed, without the competence of social actors in accomplishing these mundane, routine understandings and practices, it is argued, there would in fact be no social order

    Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution

    Get PDF
    Conjugated polymers have sparked much interest as photocatalysts for hydrogen production. However, beyond basic considerations such as spectral absorption, the factors that dictate their photocatalytic activity are poorly understood. Here we investigate a series of linear conjugated polymers with external quantum efficiencies for hydrogen production between 0.4 and 11.6%. We monitor the generation of the photoactive species from femtoseconds to seconds after light absorption using transient spectroscopy and correlate their yield with the measured photocatalytic activity. Experiments coupled with modeling suggest that the localization of water around the polymer chain due to the incorporation of sulfone groups into an otherwise hydrophobic backbone is crucial for charge generation. Calculations of solution redox potentials and charge transfer free energies demonstrate that electron transfer from the sacrificial donor becomes thermodynamically favored as a result of the more polar local environment, leading to the production of long-lived electrons in these amphiphilic polymers

    A Mixed Blessing: Market-Mediated Religious Authority in Neopaganism

    Get PDF
    This research explores how marketplace dynamics affect religious authority in the context of Neopagan religion. Drawing on an interpretivist study of Wiccan practitioners in Italy, we reveal that engagement with the market may cause considerable, ongoing tensions, based on the inherent contradictions that are perceived to exist between spirituality and commercial gain. As a result, market success is a mixed blessing that can increase religious authority and influence, but is just as likely to decrease authority and credibility. Using an extended case study method, we propose a theoretical framework that depicts the links between our informants’ situated experiences and the macro-level factors affecting religious authority as it interacts with market-mediated dynamics at the global level. Overall, our study extends previous work in macromarketing that has looked at religious authority in the marketplace) and how the processes of globalization are affecting religion

    Identifying colorectal cancer caused by biallelic MUTYH pathogenic variants using tumor mutational signatures

    Full text link
    Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 x 10(-23) and p = 6 x 10(-11), respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers. Germline biallelic pathogenic MUTYH variants predispose patients to colorectal cancer (CRC); however, approaches to identify MUTYH variant carriers are lacking. Here, the authors evaluated mutational signatures that could distinguish MUTYH carriers in large CRC cohorts, and found MUTYH-associated somatic mutations

    Analysis of the CD1 Antigen Presenting System in Humanized SCID Mice

    Get PDF
    CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34+ hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a+ cells with a dendritic morphology were present in the thymic medulla. CD1+ cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens

    Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival

    Get PDF
    Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its mutational profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with survival data. Our data shows several findings in addition to enhancing the existing knowledge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional genes significantly mutated in CRC. We find that among hypermutated tumors, an increased mutation burden is associated with improved CRC-specific survival (HR=0.42, 95% CI: 0.21-0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity (HR=1.53, 95% CI: 1.21-1.94). Furthermore, we observe differences in mutational frequency of several genes and pathways by tumor location, stage, and sex. Overall, this large study provides deep insights into somatic mutations in CRC, and their potential relationships with survival and tumor features. Large scale sequencing study is of paramount importance to unravel the heterogeneity of colorectal cancer. Here, the authors sequenced 205 cancer genes in more than 2000 tumours and identified additional mutated driver genes, determined that mutational burden and specific mutations in TP53 are associated with survival odds
    corecore