58 research outputs found

    Borrelia burgdorferi Alters Its Gene Expression and Antigenic Profile in Response to CO2 Levels

    Get PDF
    The etiologic agent of Lyme disease, Borrelia burgdorferi, must adapt to the distinct environments of its arthropod vector and mammalian host during its complex life cycle. B. burgdorferi alters gene expression and protein synthesis in response to temperature, pH, and other uncharacterized environmental factors. The hypothesis tested in this study is that dissolved gases, including CO(2), serve as a signal for B. burgdorferi to alter protein production and gene expression. In this study we focused on characterization of in vitro anaerobic (5% CO(2), 3% H(2), 0.087 ppm O(2)) and microaerophilic (1% CO(2), 3.48 ppm O(2)) growth conditions and how they modulate protein synthesis and gene expression in B. burgdorferi. Higher levels of several immunoreactive proteins, including BosR, NapA, DbpA, OspC, BBK32, and RpoS, were synthesized under anaerobic conditions. Previous studies demonstrated that lower levels of NapA were produced when microaerophilic cultures were purged with nitrogen gas to displace oxygen and CO(2). In this study we identified CO(2) as a factor contributing to the observed change in NapA synthesis. Specifically, a reduction in the level of dissolved CO(2), independent of O(2) levels, resulted in reduced NapA synthesis. BosR, DbpA, OspC, and RpoS synthesis was also decreased with the displacement of CO(2). Quantitative reverse transcription-PCR indicated that the levels of the dbpA, ospC, and BBK32 transcripts are increased in the presence of CO(2), indicating that these putative borrelial virulence determinants are regulated at the transcriptional level. Thus, dissolved CO(2) may be an additional cue for borrelial host adaptation and gene regulation

    pncA and bptA Are Not Sufficient To Complement Ixodes scapularis Colonization and Persistence by Borrelia burgdorferi in a Linear Plasmid lp25-Deficient Background

    Get PDF
    The complex segmented genome of Borrelia burgdorferi is comprised of a linear chromosome along with numerous linear and circular plasmids essential for tick and/or mammalian infectivity. The pathogenic necessity for specific borrelial plasmids has been identified; most notably, infections of the tick vector and mammalian host both require linear plasmid 25 (lp25). Genes carried on lp25, specifically bptA and pncA, are postulated to play a role for B. burgdorferi to infect and persist in Ixodes ticks. In this study, we complemented an lp25-deficient borrelial strain with pncA alone or pncA accompanied by bptA to evaluate the ability of the complemented strains to restore larval colonization and persistence through transstadial transmission relative to that of wild-type B. burgdorferi. The acquisition of the complemented strains by tick larvae from infected mice and/or the survival of these strains was significantly decreased when assayed by cultivation and quantitative PCR (qPCR). Only 10% of the pncA-complemented strain organisms were found by culture to survive 17 days following larval feeding, while 45% of the pncA- and bptA-complemented strain organisms survived, with similar results by PCR. However, neither of the complemented B. burgdorferi strains was capable of persisting through the molt to the nymphal stage as analyzed by culture. qPCR analyses of unfed nymphs detected B. burgdorferi genomes in several nymphs at low copy numbers, likely indicating the presence of DNA from dead or dying cells. Overall, the data indicate that pncA and bptA cannot independently support infection, suggesting that lp25 carries additional gene(s) or regulatory elements critical for B. burgdorferi survival and pathogenesis in the Ixodes vector

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Evidence synthesis to inform model-based cost-effectiveness evaluations of diagnostic tests: a methodological systematic review of health technology assessments

    Get PDF
    Background: Evaluations of diagnostic tests are challenging because of the indirect nature of their impact on patient outcomes. Model-based health economic evaluations of tests allow different types of evidence from various sources to be incorporated and enable cost-effectiveness estimates to be made beyond the duration of available study data. To parameterize a health-economic model fully, all the ways a test impacts on patient health must be quantified, including but not limited to diagnostic test accuracy. Methods: We assessed all UK NIHR HTA reports published May 2009-July 2015. Reports were included if they evaluated a diagnostic test, included a model-based health economic evaluation and included a systematic review and meta-analysis of test accuracy. From each eligible report we extracted information on the following topics: 1) what evidence aside from test accuracy was searched for and synthesised, 2) which methods were used to synthesise test accuracy evidence and how did the results inform the economic model, 3) how/whether threshold effects were explored, 4) how the potential dependency between multiple tests in a pathway was accounted for, and 5) for evaluations of tests targeted at the primary care setting, how evidence from differing healthcare settings was incorporated. Results: The bivariate or HSROC model was implemented in 20/22 reports that met all inclusion criteria. Test accuracy data for health economic modelling was obtained from meta-analyses completely in four reports, partially in fourteen reports and not at all in four reports. Only 2/7 reports that used a quantitative test gave clear threshold recommendations. All 22 reports explored the effect of uncertainty in accuracy parameters but most of those that used multiple tests did not allow for dependence between test results. 7/22 tests were potentially suitable for primary care but the majority found limited evidence on test accuracy in primary care settings. Conclusions: The uptake of appropriate meta-analysis methods for synthesising evidence on diagnostic test accuracy in UK NIHR HTAs has improved in recent years. Future research should focus on other evidence requirements for cost-effectiveness assessment, threshold effects for quantitative tests and the impact of multiple diagnostic tests

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Lessons Learned from Emergency Response Vaccination Efforts for Cholera, Typhoid, Yellow Fever, and Ebola

    No full text
    Countries must be prepared to respond to public health threats associated with emergencies, such as natural disasters, sociopolitical conflicts, or uncontrolled disease outbreaks. Rapid vaccination of populations vulnerable to epidemic-prone vaccine-preventable diseases is a major component of emergency response. Emergency vaccination planning presents challenges, including how to predict resource needs, expand vaccine availability during global shortages, and address regulatory barriers to deliver new products. The US Centers for Disease Control and Prevention supports countries to plan, implement, and evaluate emergency vaccination response. We describe work of the Centers for Disease Control and Prevention in collaboration with global partners to support emergency vaccination against cholera, typhoid, yellow fever, and Ebola, diseases for which a new vaccine or vaccine formulation has played a major role in response. Lessons learned will help countries prepare for future emergencies. Integration of vaccination with emergency response augments global health security through reducing disease burden, saving lives, and preventing spread across international borders

    <i>In Vivo</i> Imaging Demonstrates That <i>Borrelia burgdorferi ospC</i> Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection

    Get PDF
    <div><p><i>Borrelia burgdorferi</i> is a spirochetal bacterium transmitted by the <i>Ixodes</i> tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, <i>B</i>. <i>burgdorferi</i> infection and gene expression of the essential virulence determinant <i>ospC</i> was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with <i>in vivo</i> and <i>ex vivo</i> imaging. Although expressed from a shuttle vector, the P<sub><i>ospC</i></sub>-<i>luc</i> construct exhibited a similar expression pattern relative to native <i>ospC</i>. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of <i>ospC</i>, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant <i>B</i>. <i>burgdorferi</i> burden, but showed minimal <i>ospC</i> expression. <i>B</i>. <i>burgdorferi</i> infected skin and heart induced expression of <i>ospC</i> early during infection while the bladder and tibiotarsal joint continued to display P<sub><i>ospC</i></sub> driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in <i>ospC</i> expression, despite the requirement of <i>ospC</i> for dermal colonization. Quantitation of bioluminescence representing <i>ospC</i> expression in individual tissues was validated by qRT-PCR of the native <i>ospC</i> transcript. Taken together, the temporal regulation of <i>ospC</i> expression in distal tissues suggests a role for this virulence determinant beyond early infection.</p></div
    • …
    corecore