1,512 research outputs found
NASA's Gravitational - Wave Mission Concept Study
With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized
A life lived in classrooms : a feminist personal narrative
Dissertation supervisor: Dr. Jennifer Hart.Includes vita.This project offers a counter narrative to some accepted theories regarding graduate learning practices. By using Scholarly Personal Narrative to present my classroom experience I consider how knowledge is produced in higher education. I suggest that the use of feminist theory, postmodernism, and disability studies combined with other higher education theories may expand the limits of current graduate education. This project suggests that my story is useful to the field of higher education and graduate studies, and that by making intentional connections between higher education and feminist theory as well disability studies, new perspectives can emerge about how higher education practices regarding instruction, administration, and policy can be created.Includes bibliographical references (pages 185-202)
Gravitational-wave Mission Study
In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studie
A Demonstration of LISA Laser Communication
Over the past few years questions have been raised concerning the use of
laser communications links between sciencecraft to transmit phase information
crucial to the reduction of laser frequency noise in the LISA science
measurement. The concern is that applying medium frequency phase modulations to
the laser carrier could compromise the phase stability of the LISA fringe
signal. We have modified the table-top interferometer presented in a previous
article by applying phase modulations to the laser beams in order to evaluate
the effects of such modulations on the LISA science fringe signal. We have
demonstrated that the phase resolution of the science signal is not degraded by
the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio
Real-time phasefront detector for heterodyne interferometers
We present a real-time differential phasefront detector sensitive to better
than 3 mrad rms, which corresponds to a precision of about 500 pm. This
detector performs a spatially resolving measurement of the phasefront of a
heterodyne interferometer, with heterodyne frequencies up to approximately 10
kHz. This instrument was developed as part of the research for the LISA
Technology Package (LTP) interferometer, and will assist in the manufacture of
its flight model. Due to the advantages this instrument offers, it also has
general applications in optical metrology
Implementation of Time-Delay Interferometry for LISA
We discuss the baseline optical configuration for the Laser Interferometer
Space Antenna (LISA) mission, in which the lasers are not free-running, but
rather one of them is used as the main frequency reference generator (the {\it
master}) and the remaining five as {\it slaves}, these being phase-locked to
the master (the {\it master-slave configuration}). Under the condition that the
frequency fluctuations due to the optical transponders can be made negligible
with respect to the secondary LISA noise sources (mainly proof-mass and shot
noises), we show that the entire space of interferometric combinations LISA can
generate when operated with six independent lasers (the {\it one-way method})
can also be constructed with the {\it master-slave} system design. The
corresponding hardware trade-off analysis for these two optical designs is
presented, which indicates that the two sets of systems needed for implementing
the {\it one-way method}, and the {\it master-slave configuration}, are
essentially identical. Either operational mode could therefore be implemented
without major implications on the hardware configuration. We then.......Comment: 39 pages, 6 figures, 2 table
Demonstration of the Zero-Crossing Phasemeter with a LISA Test-bed Interferometer
The Laser Interferometer Space Antenna (LISA) is being designed to detect and
study in detail gravitational waves from sources throughout the Universe such
as massive black hole binaries. The conceptual formulation of the LISA
space-borne gravitational wave detector is now well developed. The
interferometric measurements between the sciencecraft remain one of the most
important technological and scientific design areas for the mission.
Our work has concentrated on developing the interferometric technologies to
create a LISA-like optical signal and to measure the phase of that signal using
commercially available instruments. One of the most important goals of this
research is to demonstrate the LISA phase timing and phase reconstruction for a
LISA-like fringe signal, in the case of a high fringe rate and a low signal
level. We present current results of a test-bed interferometer designed to
produce an optical LISA-like fringe signal previously discussed in the
literature.Comment: find minor corrections in the CQG versio
Detection, Localization and Characterization of Gravitational Wave Bursts in a Pulsar Timing Array
Efforts to detect gravitational waves by timing an array of pulsars have
focused traditionally on stationary gravitational waves: e.g., stochastic or
periodic signals. Gravitational wave bursts --- signals whose duration is much
shorter than the observation period --- will also arise in the pulsar timing
array waveband. Sources that give rise to detectable bursts include the
formation or coalescence of supermassive black holes (SMBHs), the periapsis
passage of compact objects in highly elliptic or unbound orbits about a SMBH,
or cusps on cosmic strings. Here we describe how pulsar timing array data may
be analyzed to detect and characterize these bursts. Our analysis addresses, in
a mutually consistent manner, a hierarchy of three questions: \emph{i}) What
are the odds that a dataset includes the signal from a gravitational wave
burst? \emph{ii}) Assuming the presence of a burst, what is the direction to
its source? and \emph{iii}) Assuming the burst propagation direction, what is
the burst waveform's time dependence in each of its polarization states?
Applying our analysis to synthetic data sets we find that we can \emph{detect}
gravitational waves even when the radiation is too weak to either localize the
source of infer the waveform, and \emph{detect} and \emph{localize} sources
even when the radiation amplitude is too weak to permit the waveform to be
determined. While the context of our discussion is gravitational wave detection
via pulsar timing arrays, the analysis itself is directly applicable to
gravitational wave detection using either ground or space-based detector data.Comment: 43 pages, 13 figures, submitted to ApJ
Constraining the Black Hole Mass Spectrum with Gravitational Wave Observations I: The Error Kernel
Many scenarios have been proposed for the origin of the supermassive black
holes (SMBHs) that are found in the centres of most galaxies. Many of these
formation scenarios predict a high-redshift population of intermediate-mass
black holes (IMBHs), with masses in the range 100 to 100000 times that of the
Sun. A powerful way to observe these IMBHs is via gravitational waves the black
holes emit as they merge. The statistics of the observed black hole population
should, in principle, allow us to discriminate between competing astrophysical
scenarios for the origin and formation of SMBHs. However, gravitational wave
detectors such as LISA will not be able to detect all such mergers nor assign
precise black hole parameters to the merger, due to weak gravitational wave
signal strengths. In order to use LISA observations to infer the statistics of
the underlying population, these errors must be taken into account. We describe
here a method for folding the LISA gravitational wave parameter error estimates
into an `error kernel' designed for use at the population model level. The
effects of this error function are demonstrated by applying it to several
recent models of black hole mergers, and some tentative conclusions are made
about LISA's ability to test scenarios of the origin and formation of
supermassive black holes.Comment: 22 pages, 4 figures. There have been various clarifications, typos
corrected, and so on, partly in response to referee comments. This second
arXiv version has been switched to AASTeX preprint format for better
compatibility with the arXiv. Accepted for publication in MNRA
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
- …
