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ABSTRACT

Efforts to detect gravitational waves by timing an array of pulsars have traditionally focused on stationary grav-
itational waves, e.g., stochastic or periodic signals. Gravitational wave bursts—signals whose duration is much
shorter than the observation period—will also arise in the pulsar timing array waveband. Sources that give rise
to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis
passage of compact objects in highly elliptic or unbound orbits about an SMBH, or cusps on cosmic strings. Here,
we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis
addresses, in a mutually consistent manner, a hierarchy of three questions. (1) What are the odds that a data set
includes the signal from a gravitational wave burst? (2) Assuming the presence of a burst, what is the direction to
its source? (3) Assuming the burst propagation direction, what is the burst waveform’s time dependence in each of
its polarization states? Applying our analysis to synthetic data sets, we find that we can detect gravitational waves
even when the radiation is too weak to either localize the source or infer the waveform, and detect and localize
sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context
of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable
to gravitational wave detection using either ground- or space-based detector data.

Key words: gravitational waves – methods: data analysis – methods: statistical

Online-only material: color figures

1. INTRODUCTION

It has been just over 30 years since Sazhin (1978) and
Detweiler (1979) showed how gravitational waves could be
detected by correlating the timing residuals of a collection
of pulsars, and 20 years since Foster & Backer (1990) pro-
posed using a collection of pulsars, i.e., a pulsar timing array, to
achieve greater sensitivity. Over the ensuing years the telescope
collecting area has increased, antenna temperature has de-
creased, pulsar timing electronics and methodology has im-
proved, and pulsars with exceptionally low intrinsic timing
noise have been discovered. As a result of these advances,
the near-future detection of a stochastic gravitational wave sig-
nal through pulsar timing observations is a strong possibility.
Analyses aimed at detecting gravitational waves using pulsar
timing array observations have traditionally focused on sta-
tionary signals (i.e., stochastic or periodic gravitational waves).
More generally, analyses aimed at detecting gravitational waves
have merged the questions of detection and characterization,
overlooking the possibility of detecting a signal that is too weak
to be characterized. Here, we describe how pulsar timing array
data may be analyzed to search for gravitational wave bursts,
demonstrating that (1) pulsar timing array data are sufficiently
rich to allow the detection of gravitational wave bursts, the lo-
calization of the burst source, and the time-dependent waveform
of the radiation in its (two) polarization states, and (2) that grav-
itational wave signals too weak to be characterized or too weak
to allow their source to be localized, may still be strong enough
to be unambiguously detected.

The first detections of gravitational waves will be impor-
tant for confirming their existence and testing whether general
relativity correctly predicts their properties (e.g., polarization

modes, propagation speed). Of perhaps greater long-term sig-
nificance will be the use of gravitational waves as a tool of obser-
vational astronomy that gives us direct insight into phenomena
that we can now observe only indirectly, if at all. For exam-
ple, Jaffe & Backer (2003), Wyithe & Loeb (2003), and Jenet
et al. (2006) have shown that the rms amplitude of a stochastic
signal arising from the confusion limit of a large number of
supermassive black hole (SMBH) binary coalescences is within
an order of magnitude of the current sensitivity of the most
advanced pulsar timing array. Since the signals that contribute
to this background arise from a population of discrete sources
distributed throughout space, we quite reasonably expect that
some of the individual sources may be observable as gravita-
tional wave bursts rising above this background. Indeed, recent
work by Sesana et al. (2009) shows that at frequencies greater
than a few times 10−8 nHz, the gravitational “background” aris-
ing from supermassive binary black hole coalescence should be
dominated by a few bright sources. Other potential burst grav-
itational wave sources in the pulsar timing array band include
cosmic (super)string cusps and kinks (Damour & Vilenkin 2001;
Siemens et al. 2007; Leblond et al. 2009) and SMBH triplets
(Amaro-Seoane et al. 2010).

Pulsar timing array observations are sensitive to gravitational
waves of periods ranging from the interval between timing
observations (days to months) and the duration of the obser-
vational data sets (years). The corresponding wavelengths are
much greater than those explored in existing or proposed human-
built ground- or space-based detectors. Ground-based detectors,
whether of the acoustic (Astone et al. 2010) or interferometric
variety (Accadia et al. 2010; Riles et al. 2010), are currently
sensitive to waves in the ∼100 Hz–1 kHz band with proposed
advances opening up the 10–100 Hz band (Smith & the LIGO

1400

http://dx.doi.org/10.1088/0004-637X/718/2/1400


No. 2, 2010 GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY 1401

Scientific Collaboration 2009; Kuroda & the LCGT Collabora-
tion 2006). Space-based detectors, which have been the subject
of extensive design studies over the last 30 years, would be sen-
sitive to gravitational waves in the ∼3 × 10−5 Hz–10 Hz band
(Stebbins 2006; Jennrich 2009; Kawamura et al. 2008). Over
this broad band—10−9–103 Hz—the scale and character of the
sources vary dramatically, e.g., ground-based detectors will be
sensitive to gravitational waves from neutron stars or solar mass
black hole binaries, supernovae, and gamma-ray burst progen-
itors; space-based detectors to gravitational waves from white
dwarf binaries, stellar disruptions about intermediate mass black
holes and the inspiral of solar mass compact objects or interme-
diate mass black holes about 104.5–107.5 M� black holes; and
pulsar timing arrays to the formation, interaction, and evolution
of SMBHs. Pulsar timing array observations thus offer their
own, unique perspective on the gravitational wave universe,
distinct from that provided by either ground- or space-based
detectors.

Analyses aimed at detecting gravitational waves using pul-
sar timing array observations have traditionally focused on sta-
tionary signals, i.e., an isotropic stochastic gravitational wave
background (Hellings & Downs 1983; McHugh et al. 1996;
Thorsett & Dewey 1996; Lommen 2001; Lommen et al. 2003;
Jenet et al. 2005b, 2006; Demorest 2007; Hobbs et al. 2008;
van Haasteren et al. 2009; Anholm et al. 2009) or gravitational
waves from discrete periodic sources (Lommen & Backer 2001;
Jenet et al. 2004; Jenet et al. 2005a, 2005c). More recent work
(van Haasteren & Levin 2010; Seto 2009; Pshirkov et al. 2010)
has investigated the detection of a gravitational wave “memory”
(Christodoulou 1991) associated with sources that radiate a sig-
nificant amount of energy in gravitational waves (Wiseman &
Will 1991) or that become unbound (Thorne 1992).

Gravitational wave detection using a pulsar timing array
begins with the collection of timing residuals from the several
array pulsars. These timing residuals are the difference between
the expected pulse arrival times (taking into account all non-
gravitational-wave propagation effects) and the actual pulse
arrival times at each pulsar observational epoch. For pulsars
used in current timing arrays, the timing precision is in the
50 ns–5 μs range. In Section 2, we summarize how these
timing residuals reflect the passage of a plane gravitational wave
through the pulsar–Earth baseline. In Section 3, we describe our
analysis for gravitational wave bursts, which takes advantage
of the correlation of the timing residuals measured for different
pulsars. In Section 4, we demonstrate the effectiveness of the
analysis by applying it to simulated data arising from a 30 pulsar
timing array and including a gravitational wave burst such as
would be expected from a parabolic encounter of two SMBHs.
Finally, in Section 5 we summarize our findings and describe
planned future work.

2. PULSAR TIMING RESPONSE TO THE PASSAGE OF A
GRAVITATIONAL WAVE BURST

2.1. Introduction

A pulsar timing array data set consists of a collection of
pulsar “time of arrival” (TOA) measurements for pulses of
the individual pulsars that comprise the array. The arrival time
observations are made for each pulsar over a period of years,
with successive pulse arrival time observations for each array
pulsar made anywhere from days to months apart. The TOA
measurements are compared to predicted arrival times based
on timing models for the individual pulsars. These models

include all non-gravitational-wave effects that affect the arrival
times. The differences between the observed and expected pulse
arrival times are referred to as timing residuals, which are then
presumed to consist of timing noise and gravitational wave
effects. Evidence for gravitational waves is sought in the timing
residuals.5 In this section, we calculate the contribution to pulse
arrival times owing to a passing plane gravitational wave burst.

2.2. Gravitational Waves

Denote the perturbative plane gravitational wave, expressed
in transverse-traceless gauge (Misner et al. 1973), as

h(t, �x) = h+(t − k̂ · �x)e(+)(k̂) + h×(t − k̂ · �x)e(×)(k̂), (1)

where k̂ is the plane wave propagation direction and e(+) and
e(×) are the two independent gravitational wave polarization
basis tensors,

elm
(+)e

(+)
lm = elm

(×)e
(×)
lm = 2 (2a)

elm
(+)k̂m = elm

(×)k̂m = elm
(+)e

(×)
lm = 0. (2b)

Locating the coordinate system origin at the solar system
barycenter, consider a pulsar at spatial rest located at �xp,

�xp(t) = Ln̂, (3)

where n̂ is the unit vector in the direction of the pulsar and L is
the pulsar’s distance.

2.3. Timing Residuals

Focus attention on the electromagnetic field associated with
the pulsed emission of a pulsar and denote the fields phase, at the
pulsar, as φ0(t). We are interested in the time-dependent phase
φ(t) of the electromagnetic field associated with the pulsed
emission measured at an Earth-based radio telescope, which we
write as

φ(t) = φ0[t − L − τ0(t) − τGW(t)], (4a)

where

τ0 =
⎛
⎝corrections owing exclusively to the spatial motion of Earth

within the solar system, the solar system with respect to the pulsar,
and electromagnetic wave propagation in the interstellar medium

⎞
⎠ ,

(4b)

and

τGW = (corrections owing exclusively to h(t, �x)). (4c)

(Note that we work in units where c = G = 1.) In the
absence of gravitational waves, τGW vanishes and the front
φ0(t) arrives at Earth at time t⊕(t) = t + L + τ0(t). In the
presence of a gravitational wave signal, the phase front arrives
at time t⊕(t) + τGW(t); thus, τGW is the gravitational wave timing
residual. Following Finn’s (2009) Equations (3.26) and (3.12e),
the arrival time correction τGW(t) is

τGW(t) = −1

2
n̂l n̂m

[
e

(+)
lmH(+) + e

(×)
lm H(×)

]
, (5a)

5 The procedure of fitting the timing model to the pulsar arrival time
measurements for gravitational wave analysis has the unfortunate side effect of
“fitting out” any gravitational wave contributions that have the form of other
timing model effects. We address this point directly in the conclusions.



1402 FINN & LOMMEN Vol. 718

where

H(A)(t, L, k̂j n̂
j ) =

∫ L

0
hA[t − (1 + k̂j n̂

j )(L − λ)]dλ. (5b)

It is convenient to introduce fA(u),

dfA

du
= hA(u), (6)

and rewrite Equation (5b) using fA(u) as follows:

H(A)(t, L, k̂j n̂
j ) = fA(t)

1 + k̂j n̂j
− fA(t − (1 + k̂j n̂

j )L)

1 + k̂j n̂j
. (7)

The contribution proportional to fA(t) is colloquially referred
to as the “Earth” term; similarly, the contribution proportional
to fA[t − (1 + k̂mn̂m)L] is referred to as the “Pulsar” term. The
Pulsar term is of central importance when pulsar timing data are
used to bound the strength of a periodic signal; however, as we
show below, only the Earth term is important when our goal is
to use pulsar timing data to detect gravitational wave bursts.

2.4. Discussion

At this point, it is worth noting several properties of the timing
residual τGW.

2.4.1. Burst Detection Involves only the Earth Term

As shown in Equation (7), the gravitational-wave-induced
timing residuals for any pulsar may be written as the difference
of two functions, each of which is an integral of h+,×(t, �x).
These two functions are identical, except that one is displaced
in time by an amount L(1 + k̂mn̂m) with respect to the other.
Correspondingly,

1. when timing residual measurements from an array of
pulsars are available, the first evidence for the passage of a
gravitational wave burst will appear simultaneously in all
observed residuals; and

2. as long as the burst duration ΔT and the observation
duration T are less than (1 + k̂mn̂m)L only the Earth term
contributes to the correlated timing residuals in the pulsar
timing array.6

When searching for gravitational wave bursts we can thus
ignore the pulsar term except for sources within an angle

θp < cos−1

[
1 − ΔT

L

]
∼ 2◦30′

[
ΔT

1 yr

1 kpc

L

]1/2

(8)

of a particular pulsar.

2.4.2. Timing Residuals in a Pulsar Network are Sensitive to
Gravitational Wave Polarization

The timing residual τGW is a linear combination of the
integrals of the two polarizations of the waveform H(A), i.e.,
we may rewrite Equation (5a) as

τGW(t) = −1

2
[F +H(+) + F×H(×)], (9)

6 Other bursts, having interacted with individual pulsars at much earlier times
(thousands of years), will contribute to the timing noise of individual pulsars.
These contributions will not be correlated among the pulsars in the timing
array over the human observational timescale (decades).

where
F (A) = n̂l n̂me(A)

lm (k̂). (10)

The timing residual correlations of timing array pulsars take a
form that depends on the pulsar locations and the gravitational
wave polarization. When the wave propagation direction k̂ is
known, the measured timing residuals of two appropriately
chosen pulsars are sufficient to separately measure the radiation
in each of the two gravitational wave polarization states.

2.4.3. Timing Residuals in a Pulsar Timing Array are Sensitive to
Wave Propagation Direction

The polarization tensors e(A)
lm are orthogonal to the wave prop-

agation direction k̂; correspondingly, the relative contribution of
H(A) to the timing residual τGW for a given pulsar depends on
the gravitational wave propagation direction through F (A). In
addition, the overall amplitude of the timing residual for any
particular pulsar depends on the wave propagation direction
through the additional factor (1 + k̂mn̂m

p )−1. Observations of the
timing residuals in three pulsars, with appropriately chosen lines
of sight from Earth, are thus sufficient to measure the radiation
propagation direction.

Combining the insights of Sections 2.4.1, 2.4.2, and 2.4.3,
we see that a pulsar timing array of five or more pulsars has, in
principle, sufficient information to fully characterize a passing
gravitational wave burst. In the following section, we describe
the statistical methodology by which we can infer k̂ and h+,×(t)
at, e.g., the solar system barycenter from the measured timing
residuals in a pulsar timing array.

2.4.4. Pulsar Timing Residuals are Larger for Longer Bursts than for
Shorter Bursts

The gravitational-wave-induced timing residual associated
with any particular pulsar is proportional to the integral of hij (t)
over time (see Equation (5b)). This leads to an important point:
for fixed strain amplitude and waveform “shape,” the timing
residuals associated with bursts have magnitudes proportional
to the burst duration. This is very different than the case
with ground-based gravitational wave detectors (e.g., the Laser
Interferometer Gravitational-wave Observatory, LIGO; Saulson
1994) or the proposed space-based detector LISA, where the
measured quantity responds directly to the gravitational wave
strain. The difference arises because the gravitational wave
signal band of interest for ground- and space-based detectors
has wavelengths greater than the detector size, while the band of
interest for pulsar timing array measurements has wavelengths
much smaller than the detector size (i.e., the pulsar–Earth
baseline distance).7

3. STATISTICAL METHODOLOGY

3.1. Framing the Questions

Our goal is threefold. First, ascertain the odds that the
particular data set d includes a contribution characteristic of
a passing gravitational wave burst; second, assuming that it is
so, determine the probability density that the contribution is
characteristic of a wave propagating in the direction k̂; and,
finally, assuming the contribution is characteristic of a burst

7 For LISA, the detector bandwidth does extend to wave frequencies a few
times greater than the round-trip travel along the 5 × 106 km arm baseline.
This effect of greater sensitivity at longer periods is apparent in the
high-frequency part of LISA’s response function.
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propagating in direction k̂, determine the probability density
that the contribution is characteristic of a waveform at Earth
described by h = h+(t − k̂ · �x)e+(k̂) + h×(t − k̂ · �x)e×(k̂) for
functions h+ and h×.

While actual analysis might address these questions in the
order given above, it is pedagogically simpler and more instruc-
tive to approach them in the opposite order, which we do in the
three subsections that follow.

3.2. Inferring h

Given timing residual observations d from an array of pulsars
that include a contribution from a plane gravitational wave
propagating past Earth in direction k̂, what is the probability
density ph that the wave is described by h?

The desired probability density depends on the observations,
the response of the pulsar network to incident gravitational
waves, the statistical properties of the measurement and in-
trinsic pulsar timing noise, and the assumed direction of wave
propagation:

ph(h|d, k̂, I) =(
probability density that gravitational wave burst is described by the wave h
propagating in direction k̂, and other, unenumerated assumptions I

)
.

(11)

Exploiting Bayes’ Theorem, the probability density ph can be
expressed in terms of the normalized likelihood Λ, an a priori
probability density qh that expresses expectations regarding h,
and a normalization constant Zh:

ph(h|d, k̂, I) = Λ(d|h, k̂, I)qh(h|k̂, I)

Zh(d|k̂, I)
, (12a)

where

Λ(d|h, k̂, I) =
(

probability of observing TOA residuals d given
gravitational wave h propagating in direction k̂

)
(12b)

qh(h|k̂, I) =
(

a priori probability density that h describes the
gravitational wave burst propagating in direction k̂

)
(12c)

Zh(d|k̂, I) =
∫

dnh+ dnh× Λ(d|h, k̂, I)qh(h|k̂, I)

=
(

probability of observing d assuming the presence of
gravitational wave burst h propagating in direction k̂

)
.

(12d)

(In Equation (12d) the integral is over all possible values of the
waveform h+ and h× at the n sample times.) We discuss each of
these terms in more detail below.

3.2.1. The Likelihood Λ

Focus attention on pulsar j, whose measured timing residuals
are represented as the time-series vector dj. These residuals are
the sum of measurement noise; intrinsic pulsar timing noise,
scintillation, and other propagation noises nj; and the pulse
arrival time disturbance owing to the passing gravitational wave.
The pulse arrival time disturbances owing to the passing of a
gravitational wave depend on h, including the wave propagation

direction k̂. Representing the timing residual response for pulsar
j by the linear operator Rj, the net timing residual measured for
pulsar j is

dj = nj + Rj h. (13)

The noise associated with individual pulsar timing residual
observations is generally well modeled as a Gaussian distributed
with zero mean; correspondingly, the noise associated with the
collection of observations dj is described by a zero-mean multi-
variate Gaussian. Denoting the noise auto-correlation for pulsar j
as cj (tl−tm), write the probability density of observing residuals
dj in the timing data of pulsar j as

Λj (dj |h, k̂, I) = N (dj − Rj h|Cj ), (14a)

where Cj is the noise auto-correlation in detector j and

N (x|C) =
(

(multivariate) normal distribution for zero
mean random deviate x given co-variance C

)
(14b)

= exp
[− 1

2xT C−1x
]

√
(2π )dim x det ||C||

. (14c)

Recall that the noise covariance C has elements

Cjk = 〈n(tj )n(tk)〉, (15)

where j and k now label sample times, n(t) is the noise at time t,
and 〈〉 denotes an ensemble average over the noise. Expressed
as a function of τ = tk − tj , C(τ ) is the noise auto-correlation
function, which is just the cosine-transform of, and thus entirely
equivalent to, the noise power spectral density (Kittel 1958).
White, pink, red, or more complex noise timing noise spectra
are thus equally well described by Equation (14a).

Now, assume that the timing noise associated with the
observations dj of the np different pulsars is uncorrelated. Under
this assumption, the probability density of a set of timing
residuals d, consisting of residuals dj from each pulsar j in the
network, is

Λ(d|h, k̂, I) =
np∏

j=1

Λj (dj |h, k̂, I) (16a)

= N (d − Rh|C). (16b)

3.2.2. The Prior qh

The a priori probability density qh describes our expectations,
before interpreting the observations d, regarding the gravita-
tional wave burst h. It is often the case that discussions of priors
like these are more heated and intense than is warranted by the
difference any reasonable choice makes to the final result. To
understand how this is so, it is worthwhile to return for a moment
to Equation (12a). The probability density ph is the product of
two h-dependent terms, Λ and qh. All of the data dependence
is encapsulated in the likelihood Λ, i.e., the prior qh is indepen-
dent of the observations d. When the data are conclusive, Λ is
more sharply peaked than qh and the dependence of ph on h is
dominated by the data-dependent term Λ. In this case, the prior
qh is approximately constant over the volume of h where ph is
large and the particular choice of prior is unimportant. On the
other hand, when the data are inconclusive the dependence of
ph on h is dominated by the prior qh and the structure of Λ is
unimportant. As long as the prior, viewed by itself, does not
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reflect an overly strong set of expectations about h it will not
matter what particular form it takes except at the margins where
the observations are suggestive but not conclusive. With this in
mind, we consider the basic assumptions we make regarding a
gravitational wave burst and how those are represented in qh.

To begin, we make no assumption that the nature of the burst
should be correlated with its direction of propagation, i.e., we
drop the dependence of qh on k̂:

qh(h|k̂, I) = qh(h|I). (17)

We also assume that there is no a priori correlation between the
two dynamically independent polarization states, in which case

qh(h|I) = q+(h+|I)q×(h×|I), (18)

where the “+” and “×” subscripts denote any two orthogonal
polarization states. Since the resolution of a gravitational wave
into orthogonal polarization states is determined only up to a
rotation about the propagation direction, it must be the case that
q+ and q× are the same function q0 of their arguments, i.e.,

qh(h|I) = q+(h+|I)q×(h×|I) = q0(h+|I)q0(h×|I). (19)

Now suppose we represent the gravitational waveform h by the
values of h+ and h× at the solar system barycenter sampled at
nh times tj:

h+,j = h+(tj ) (20a)

h×,j = h×(tj ). (20b)

Assuming that the product h+(t)h+(t + τ ) (similarly
h×(t)h×(t + τ )) vanishes for τ �= 0 when averaged over the
ensemble of all possible waveforms h+ (h×), Summerscales
et al. (2008) showed that we obtain a functional equation for q0
whose solution is

q0(h|σ, I) = N (h|σI ) (21a)

= [
(2πσ 2)dim h

]−1/2
exp

(
−1

2

dim h∑
k=1

h2
k

σ 2

)
, (21b)

where σ is an undetermined constant and I denotes the appro-
priately dimensioned identity matrix.

Our minimal assumptions thus fix the prior qh up to two
undetermined constants σ+ and σ×:

qh(h|σ+, σ×, I) =
∏
k

N (h+(tk)|σ+I )N (h×(tk)|σ×I ). (22)

In the statistics literature, the new constants σ+ and σ×
are referred to as hyperparameters (Gelman et al. 2004,
Chapter 5). Often times the hyperparameters may have a phys-
ical interpretation that allows their values to be set, or a priori
probability distributions (hyperpriors) selected to describe them,
in which case the hyperparameters are treated on par with the
other problem parameters. In our case, there is a natural inter-
pretation of σ+,× as the rms amplitude of the gravitational wave
burst. This interpretation is not sufficient to determine σ+,× a pri-
ori or determine an a priori probability density over σ+,×. This
situation is not at all uncommon. Several methods have been

suggested and investigated for the treatment of hyperparame-
ters in this case (Galatsanos & Katsaggelos 1992; Thompson &
Kay 1993; Keren & Werman 1996; MacKay 1996; Galatsanos
et al. 1998; MacKay 1999; Cawley & Talbot 2007). Comparative
studies suggest that the best treatment assigns to the hyperpa-
rameters those values that optimize Zh regarded as a function of
the hyperparameters (MacKay 1996, 1999; Molina et al. 1999).
We adopt this procedure here.

The normalization constant Zh is the integral of Λqh over all
h+, h× (see Equation (12d)). This quantity is often referred to
as the “evidence” for h, although we will eschew that overly
suggestive terminology. Zh(d|k̂, I) is a probability itself—it is
the probability of making the particular observation d assuming
a wave propagating in direction k̂ but without regard to the wave
amplitude or “shape”—and it will appear again, as a probability,
in Section 3.3.

Since all of the probability densities that arise in our problem
are normal distributions, Zh may be computed in closed form.
Combining Equation (12d) with Equations (14a), (16a), and
(21a) and completing the square in the exponential we obtain

Zh(d|k̂, σ+, σ×, I) = exp
[− 1

2 dT C−1d
]

√
(2π )dim ddet ||C||

× exp
[

1
2 (RT C−1d)T A−1(RT C−1d)

]
√

det ||A||σ 2 dim h+
+ σ

2 dim h×
×

,

(23a)

where

A =
(

σ−2
+ I+ 0
0 σ−2

× I×

)
+ RT C−1R (23b)

and I+,× represent the appropriately dimensioned unity matrices.
The k̂ dependence, indicated in Zh(d|k̂, σ+, σ×, I), appears
on the right-hand side of Equation (23a) implicitly via the
dependence of R on k̂.

3.2.3. The Probability Density ph

To summarize, the posterior probability density ph is given
by

ph(h|k̂, d, σ+, σ×, I) =
√

det ||A||
(2π )dim h

× exp

[
−1

2
(h − h0)T A (h − h0)

]
,

(24a)

where h0 satisfies

Ah0 = RT C−1d (24b)

with A given by Equation (23b).
The reader may note that Equation (24b) for h0 bears

a superficial resemblance to a “(regularized) least-squares”
estimate for the incident wave. This resemblance is an accident
of the notation. The operator A that appears in Equation (24b)
would be a constant in a least-squares or regularized least-
squares analysis. Here, however, the regularization constants
σ+ and σ× that appear in A get their values through the
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optimization of Zh, which involves both A and the observations
d. Equation (24b) for h0 must be solved simultaneously with
the optimization of Zh, leading to σ+, σ×, and h0 that differ from
any “least-squares” analysis. Finally, the principal result of our
analysis—i.e., Equation (24a) for ph—would never arise from a
least-squares (or a maximum likelihood) analysis.

As is apparent from Equation (24a), h0 is the waveform that
maximizes the probability density ph. As such, it is naturally
the “best guess” for h. The availability of the overall probability
density ph gives us the opportunity to say and do much more.
With ph comes the ability to characterize the certainty one should
assign to this inference and, in general, the ability to propagate
errors through any inferences that depend on our estimate for
h. (See, e.g., R. Bondarescu et al. 2010, in preparation, where
ph is used to estimate the uncertainty in the gravitational wave
Stokes Parameters.)

As a final note we observe that the amplitude signal-to-noise
ratio ρ associated with an inference characterized by h0 is

ρ2 = (Rh0)T C−1 (Rh0) . (25)

3.3. Inferring the Wave Propagation Direction k̂

Given that pulsar timing array observations d are assumed to
include the signal from a plane gravitational wave propagating
past Earth in an unknown direction, what is the probability
density that the wave is propagating in direction k̂?

The desired probability density depends on the response of the
pulsar network to incident waves and the statistical properties
of the measurement and intrinsic timing noise:

pk(k̂|d, I) =
⎛
⎝probability density that burst is propagating

in the direction k̂, given data d and
other, unenumerated assumptions I

⎞
⎠ . (26)

Exploiting Bayes’ Theorem the probability density pk can be
expressed in terms of pd, an a priori probability density that
expresses our assumptions regarding k̂, and a new normalization
constant Zk:

pk(k̂|d, I) = Z−1
k (d|I)pd (d|k̂, I)qk(k̂|I), (27a)

where

qk(k̂|I) =
(

a priori probability density that the gravitational
wave burst is propagating in direction k̂

)
(27b)

and

Zk(d|I) =
∫

d2Ωk pd (d|k̂, I)qk(k̂|I). (27c)

We have encountered the probability pd (d|k̂, I) previously:
it appeared as the normalization constant Zh(d|k̂, I) in
Equation (12d). Correspondingly, Equation (27a) becomes

pk(k̂|d, I) = Zh(d|k̂, I)

Zk(d|I)
qk(k̂|I) (27d)

with

Zk(d|I) =
∫

d2Ωk Zh(d|k̂, I)qk(k̂|I). (27e)

A non-controversial choice of prior qk arises from assuming
that we have no a priori reason to believe that gravitational wave
bursts are propagating preferentially in any direction, in which
case qk is uniform on the sphere (i.e., qk(k̂) = (4π )−1). In that
case q(k̂|I) is independent of k̂ and we have

pk(k̂|d, I) = 1

4π

Zh(d|k̂, I)

Zk(d|I)
, (28a)

Zk(d|I) = 1

4π

∫
d2Ωk Zh(d|k̂, I), (28b)

with Zh given by Equation (12d).

3.4. Inferring the Odds that a Gravitational Wave is Present

3.4.1. Model Comparison and the Bayes Factor

Given timing residual observations d from an array of pulsars,
what odds should we give that a gravitational wave burst was
incident on Earth over the period of the observation?

We treat this question as a problem in Bayesian model
comparison (MacKay 1992; Clark et al. 2007). Consider the
two models

M1 = (a single gravitational wave burst present) (29a)

M0 = (no gravitational wave signals present). (29b)

(Note that two or more signals present, or noise character
changes, etc., are all different hypotheses.) Introduce the odds
ratio O as the ratio of the probability of hypothesis M1 to the
probability of hypothesis M0:

O = pM (M1|d, I)

pM (M0|d, I)
, (30a)

where

pM (Mk|d, I) =
(

probability, given observations
d, that hypothesis Mk is true

)
, (30b)

and I denotes additional, unenumerated conditions. Following
Bayes’ Theorem each of these probabilities can be expressed in
terms of a likelihood and an appropriate a priori probability:

pM (M1|d, I) = qM (M1|I)

ZM (d|I)

×
∫

dnθ Λ(d|M1, θ , I)qθM (θ |M1, I)

(31a)

pM (M0|d, I) = qM (M0|I)

ZM (d|I)
Λ(d|M0, I), (31b)

where

Λ(d|M1, θ , I) =(
probability density of observing d assuming the gravitational
wave signal described by the parameters θ is present

)
(31c)

Λ(d|M0, I) =(
probability density of observing d assuming no signal is present

)
(31d)
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qM (Mk|I) = (a priori probability of hypothesis Mk)

(31e)

qθM (θ |Mk, I) =
(

a priori probability that h is described
by parameters θ given hypothesis Mk

)
(31f)

and ZM is determined by requiring∑
k

pM (Mk|d, I) = 1. (31g)

The odds ratio O can thus be expressed as the product of two
terms, one that depends only on the observations and one that
depends only on our a priori assumptions about the outcome:

O = B(M1,M0|d)γ (M1,M0), (32a)

where

B(M1,M0|d) =
∫

dnθ Λ(d|M1, θ , I)qθM (θ |M1, I)

Λ(d|M0, I)
(32b)

γ (M1,M0) = qM (M1|I)

qM (M0|I)
. (32c)

B(M1,M0|d), the data-dependent contribution to O, is re-
ferred to as the Bayes factor (Gelman et al. 2004, p. 184). It is
the ratio of the marginalized likelihood of the data under the two
hypotheses M1 and M0 and reflects the evidence provided by the
observations d in favor of hypothesis M1 relative to M0. The
Bayes factor does not involve any subjective judgment regard-
ing the reasonableness of hypothesis M1 or M0: it depends only
on the instrumentation response and noise characteristics and
the data actually taken. In this regard the Bayes factor may be
said to be strictly objective. When B(M1,M0|d) is large com-
pared to unity, the observations favor M1; when it is small com-
pared to unity, the observations favor M0.

The term γ (M0,M1) (see Equation (32c)) is referred to as
the prior odds ratio. It depends only on our prior prejudice
regarding the probability that exclusive hypothesis M1 or M0
holds. It may be regarded as complementary to the Bayes factor
B, i.e., whereas B depends only on the data and not on anyone’s
preconceptions regarding the probability that M1 or M0 hold, the
prior odds ratio γ is independent of the observations and depends
entirely on those preconceptions. In this way, we see that the
odds ratio O divides neatly into “objective” and “subjective”
contributions, which can be separately evaluated (and, in the
case of the prior odds ratio, argued over).

Depending on our interest or prejudice, γ can take on different
values. Most generally γ is a function of (at least) the expected
event rate and the duration of the observation. As a simple
example, suppose we believe that gravitational wave burst events
are Poisson-distributed in time with an expected event rate λ
and that our observation d covers an interval of duration T.
Correspondingly we assign the priors

qM (M0) = exp(−T λ) (33a)

qM (M1) = T λ exp(−T λ), (33b)

leading to

γ (M1,M0) = T λ. (33c)

The odds ratioO, i.e., the product Bγ , should be much greater
than unity before we are entitled to conclude with certainty
that we have observed a (single8) gravitational wave burst
with amplitude greater than h0, i.e., B should be much greater
than γ −1.

As we go about evaluating the odds ratio O, it is important
to note that the Bayes factor is fixed by the instrumentation and
the actual observation d, and is independent of our prejudice or
expectations regarding sources and their rates. The prior odds
ratio γ may fairly differ between individuals or change as our
expectations change; however, the Bayes factor associated with
the particular data d never changes. Today we may honestly
believe that the event rate is λ; but 1, 2, 5, or 10 yr from now
our better informed understanding may lead us to a better event
rate estimate λ′. Given the Bayes factor we are fully entitled
to reinterpret old observations in light of new understanding
as embodied in a revised γ ′.9 For this reason, observational
papers that report the Bayes factor for a reasonable sampling of
hypotheses Mk have a particularly lasting value.

3.4.2. Computing the Bayes Factor

We now turn to computing the Bayes factor B(d)
(Equation (32b)). Focus first on the denominator Λ(d|M0), i.e.,
the probability density that the particular observation d is an
instance of detector network noise. Referring to the discussion
of Section 3.2.1 this probability density is

Λ(d|M0, I) = N (d|C) (34a)

= exp
[− 1

2 dT C−1d
]

√
(2π )dim d det ||C||

. (34b)

Turn now to the Bayes factor numerator,∫
dnθ Λ(d|M1, θ , I)qθM (θ |M1, I), (35)

which we recognize, upon inspection, as the normalization
constant Zk(d|I) defined in Equation (28b).

The Bayes factor is thus given by

B(d) = Zk(d|I)

Λ(d|M0, I)
(36a)

=
∫

d2Ωk

4π

exp
{

1
2 (RT C−1d)T A−1(RT C−1d)

}
√

det ||A||σ 2 dim h+
+ σ

2 dim h×
×

, (36b)

where we have taken advantage of the expression for Zh given
in Equation (23a).

3.5. Summary

In the preceding discussion, we have described a Bayesian
analysis that addresses the following three questions.

1. Does the data set d include the signal from a passing
gravitational wave burst?

8 If T λ is not much less than unity then we should also consider the
additional hypothesis Mk for k ranging at least as large T λ.
9 As long as our improved understanding does not arise principally from
these particular observations.
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2. Assuming that a gravitational wave burst is present, what is
the probability density that the wave is propagating in the
direction k̂?

3. Assuming a burst propagating in direction k̂, what is the
probability density that the wave at Earth is characterized
by h?

The answers to these questions—i.e., the principal results of
this section—are given for the first question, by Equation (36a);
for the second question, by Equation (28a); and, for the third
question, by Equation (24a). In the next section, we will
demonstrate the effectiveness of this analysis, making use of
these three results.

4. EXAMPLES

4.1. Overview

To illustrate and demonstrate the effectiveness of the analysis
techniques just described, we apply them to simulated obser-
vations of a gravitational wave burst characteristic of a close,
parabolic encounter of two SMBHs, such as might occur when
the nuclear black holes first find each other following a major
merger of two galaxies. We consider four cases:

1. a strong signal, in which we can detect the signal, localize
the source in the sky, and infer the radiation waveform;

2. a moderate strength signal, in which we can detect the
signal and localize the source, but not accurately infer the
waveform;

3. a weak signal, which can be clearly detected but not
accurately localized or characterized; and

4. no signal at all.

For these examples, we use the 30 pulsars in the International
Pulsar Timing Array (IPTA; Hobbs et al. 2010) as described
in Table 1. The measured timing residual for each pulsar is a
superposition of white noise with rms timing residual given in
Table 1 and red noise normalized to have the same spectral
density as the white noise at frequency 0.2 yr−1. Of these
30 pulsars, 10 have short-timescale timing residual noise rms
less than 0.2 μs, 14 have short-timescale noise rms between 0.2
and 1 μs, and the remaining 5 have short-timescale noise rms
between 1 and 5 μs.10

The data sets we use for these examples are constructed by

1. calculating the gravitational wave strain associated with the
parabolic encounter of two SMBHs (see Section 4.2.1);

2. evaluating the gravitational wave contribution to the pulse
arrival time for each pulsar described in Table 1;

3. adding the appropriate noise to the “gravitational wave”
timing residuals (see Section 4.2.2); and

4. removing the best-fit linear trend from the noisy timing
residuals.

At present, actual pulsar timing residual observations are
constructed by fitting actual pulse TOA data for each pulsar to
a timing model characterized by, among other parameters, the
pulsar period and period derivative (Edwards et al. 2006). The
final step in the construction of our simulated data—removing
the linear trend—modifies the data in a manner similar to the

10 This is a particular characterization of these pulsars based on
communications at the time of this writing from the Parkes Pulsar Timing
Array, the European Pulsar Timing Array, and the North American Nanohertz
Observatory for Gravitational Waves. It is not a definitive characterization. We
are not presenting the data associated with these pulsars but rather using them
as an example of a realistic IPTA.

Table 1
IPTA Pulsars, Their Short-timescale Timing Noise rms, and the Telescopes

from which Those Noise Timing Residuals were Measured

No. Pulsar rms (μs) Telescope

1 J1909−3744 0.054 GBT
2 J1713+0747 0.055 AO
3 J0437−4715 0.060 Parkes
4 J1857+0943 0.066 AO
5 J1939+2134 0.080 GBT
6 J0613−0200 0.110 GBT
7 J1640+2224 0.110 AO
8 J1744−1134 0.130 GBT
9 J1741+1300 0.140 AO

10 J1600−3053 0.190 GBT
11 J1738+0333 0.200 AO
12 J0030+0451 0.300 AO
13 J0711−6830 0.340 Parkes
14 J2317+1439 0.360 AO
15 J2145−0750 0.420 Parkes
16 J1012+5307 0.540 GBT
17 J1022+1001 0.700 WSRT
18 J0218+4232 0.830 GBT
19 J1643−1224 0.880 Parkes
20 J2019+2425 0.910 AO
21 J1024−0719 0.960 Parkes
22 J1455−3330 0.960 GBT
23 J1918−0642 0.960 GBT
24 J1603−7202 0.990 Parkes
25 J2129−5721 0.990 Parkes
26 J1824−2452 1.060 Parkes
27 J1730−2304 1.190 Parkes
28 J1732−5049 1.250 Parkes
29 J1045−4509 1.370 Parkes
30 J2124−3358 2.380 Parkes

“fitting-out” procedure that occurs in the construction of actual
timing residual data sets.

To summarize, our simulated data sets model—in schematic
form—the major features of modern pulsar timing array data
sets and the elements that complicate their analysis: white timing
noise on short timescales, red timing noise on long timescales,
and formation of timing residuals through fitting pulse arrival
times to a global timing model.

4.2. Construction of Simulated Data Sets

4.2.1. Parabolic Encounter of Two Supermassive Black Holes

Following the major merger of two galaxies, each harboring a
nuclear SMBH, dynamical friction will drive the nuclear black
holes to the nucleus of the merged galaxy. Eventually they will
find each other, form a binary, and coalesce. When they first
find each other there may occur a series of close, high-speed
encounters, each leading to a burst of radiation, whose duration
may be estimated as twice the ratio of the impact parameter to
the velocity at periapsis. We adopt this burst as an exemplar for
the purpose of demonstrating the effectiveness of the analysis
techniques just described for gravitational wave burst. At the
same time, however, we emphasize that the parabolic encounter
gravitational wave model used here is intended as a stand-in
for any gravitational wave burst, i.e., the particular model and
model parameters adopted here do not correspond to a case we
regard as realistic.

We model the parabolic encounter radiation burst via the
quadrupole formula applied to the Keplerian parabolic trajec-
tories of the equivalent Newtonian system. In the quadrupole
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Figure 1. Power spectral density of simulated timing noise for PSR J1909−3744. The noise is simulated as the sum of a white noise contribution, which is determined
at high frequencies, and a red noise contribution, which is determined at low frequencies. The crossover frequency is chosen to be 0.2 yr−1, which is characteristic of
timing array millisecond pulsars. For more details, see Section 4.2.2.

(A color version of this figure is available in the online journal.)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−15

−10

−5

0

5
x 10

−14

st
ra

in

 

 

h
+

h×

−1000 −500 0 500 1000
−2

−1

0

1

2

days

µs

 

 
J1909−3744
J0613−0200
J1738+0333
J1012+5307
J1024−0719
J1824−2452

Figure 2. Gravitational wave strain incident on Earth and the corresponding timing residuals induced in a sample of IPTA pulsars. In this example, the waves are
characteristic of the parabolic encounter of two 109 M� black holes, impact parameter 180 M (i.e., 0.02 pc), at a distance of 15 Mpc in the direction of the Virgo
Cluster of galaxies (R.A. 12h5m, decl. 12.◦5). (See the discussion in Section 4.3.1.) The top panel shows the radiation waveform in the two independent polarization
states. The bottom panel shows the timing residuals induced by the waveform in a sample of 6 of the 30 IPTA pulsars.

(A color version of this figure is available in the online journal.)

approximation, the gravitational waves radiated near periapsis
are projections of the second time derivative of the system’s
quadrupole moment, i.e.,

h+ = 2

r
Q̈jke

(+)
jk (k̂) (37a)

h× = 2

r
Q̈jke

(×)
jk (k̂), (37b)

where k̂ is the unit vector in the direction of wave propagation,
we have adopted the Einstein summation convention of sum-
ming over repeated indices, and work in units where G = c = 1.

For Keplerian parabolic orbits, the trajectories (and, correspond-
ingly, the system’s quadrupole moment) can be expressed in
closed form. Without loss of generality we take the system’s
motion to be in the x–y plane and the periapsis at y = 0 and
x > 0, in which case

Q̈xx = μM

w3
0w

4
1b

[ − 3w3
1

(
w8

1 − 6w6
1 + 24w2

1 − 16
)

+ w0
(
7w8

1 − 30w6
1 + 24w2

1 − 16
)]

(38a)

Q̈yy = 4μM

w3
0w

2
1b

[−3w3
1

(
w4

1 − 4
)

+ w0
(
5w4

1 − 4
)]

(38b)
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Figure 3. Superposition of the gravitational-wave-induced timing residuals for the strong signal case and the same sample of IPTA pulsars shown in the bottom panel
of Figure 2, with the “red + white” timing noise (see Section 4.2.2) characteristic of typical millisecond pulsar timing noise.

(A color version of this figure is available in the online journal.)

Figure 4. Natural log of the inferred probability density (in units of rad−2) that
the source of gravitational waves present in the “strong signal” simulated IPTA
data set described in Section 4.3.1 is found at location Ω. The smallest 90%
probability contour has an area much less than 1 deg2 and includes the actual
source location. The white squares show the locations of the 30 IPTA pulsars
used as detectors.

(A color version of this figure is available in the online journal.)

Q̈xy = Mμ

w3
0w1b

√
2

[
w0

( − 18w4
1 + 32w2

1 + 32
)

+ 3w1
(
7w8

1 − 30w6
1 + 24w2

1 + 16
)]

, (38c)

where M and μ are the system’s total and reduced mass, b is the
impact parameter, and wo and w1 are given by the following:

w0 =
√

8 + 9
M

b

(
t

b

)2

, (38d)

w1 =
[

3
t

b

√
M

b
+ w0

]1/3

. (38e)

Similarly, the gravitational wave contribution to the tim-
ing residual is a projection of the time integral of h (see
Equation (5a)), which is proportional to the first time deriva-
tive of the system’s quadrupole moment:

Q̇xx = μb√
2w0w

4
1

√
M

b

(
w4

1 − 4
) (

w4
1 − 6w2

1 + 4
)

(39a)

Q̇yy = 4μb

w0w
2
1

√
M

b

(
w4

1 − 4
)

(39b)

Q̇xy = bμ√
2w0w

3
1

√
M

b

(−3w6
1 + 8w4

1 + 16w2
1 − 24

)
. (39c)

4.2.2. Timing Noise

The millisecond pulsars used in modern pulsar timing arrays
typically show white timing noise on short timescales, turning
to red noise on timescales of 5–10 yr. For the demonstrations
here we model the timing noise as the superposition of white
noise and red noise, with the red noise contribution normalized
to have the same amplitude as the white noise contribution at
the frequency fred = 0.2 yr−1. With this normalization the
noise power spectrum for each pulsar in our array is completely
determined by the short-timescale (white) timing noise rms
given in Table 1.

To compute the red contribution to the timing noise, we apply
a digital integrator to white noise. To design the integrator we
follow Tseng (2006), choosing a single sub-division of the unit
delay, a seventh-order FIR filter, and a cascade of three unit
delays. The corresponding integrator is given by the transfer
function

H (z) = 1
29

−5+49z−1−245z−2+1225z−3+1225z−4−245z−5+49z−6−5z−7

6(1−z−1) . (40)

Figure 1 shows the characteristics of the power spectral
density of the simulated timing noise normalized for PSR
J1909−3744.
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Figure 5. Inferred h+ and h× radiation waveforms for the example data set described in Section 4.3.1.

(A color version of this figure is available in the online journal.)
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Figure 6. Superposition of the timing residuals induced by the moderate strength gravitational wave burst, for the same sample of IPTA pulsars shown in the bottom
panel of Figure 2, with the “red + white” timing noise (see Section 4.2.2) characteristic of typical millisecond pulsar timing noise.

(A color version of this figure is available in the online journal.)

Table 2
Results Summary for Data Analysis Applied to Four Simulated Data Sets

Signal ln B(d) ΔΩ90% (deg2) ρ2 σ+ σ×
Strong 3.8 × 103 
1 3.8 × 10+1 1.1 × 10−13 1.2 × 10−13

Moderate 6.6 × 101 5.8 × 102 8.7 × 10−1 2.4 × 10−14 2.4 × 10−14

Weak 2.2 × 100 4.2 × 103 2.1 × 10−1 2.0 × 10−14 2.0 × 10−14

Absent −8.4 × 100 1.2 × 104 7.9 × 10−2 1.8 × 10−14 1.9 × 10−14

Notes. In all cases, the signal corresponds to radiation from a parabolic flyby
of two 109 M� black holes propagating from the direction of the Virgo Cluster.
In the “strong” signal case the source is located at 15 Mpc; in the “moderate”
signal case the source is at a distance of 100 Mpc; in the “weak” signal case
the source is at a distance of 261 Mpc; and in the final, “absent” signal case the
simulated data set consists of timing noise alone. ρ2 is the amplitude-squared
signal-to-noise ratio associated with inference (see Equation (25)). For details
see Section 4.3.

4.3. Analysis of Simulated Data for Strong, Moderate, Weak,
and No Signal

Our analysis methodology is designed to answer three ques-
tions. (1) Is a gravitational wave signal present? (2) Where is
the source? (3) What is the detailed structure of the waveform?
Here, we explore the ability of our analysis to answer these
questions. For weak signals, it may be possible to definitively
answer the first of these questions, while being unable to answer
the second or third. For stronger signals, it may be possible to
answer the first question definitively, the second moderately
well, and the third not at all. Finally, for the strongest signals
all three questions may be answered in detail. We illustrate
all three cases in the following three subsections, beginning
with a strong signal example and ending with a weak signal
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Figure 7. Natural log of the inferred probability density (in units of rad−2) that
the source of gravitational waves present in the “moderate signal” simulated
IPTA data set described in Section 4.3.2 is found at location Ω. Also shown
is the smallest 90% probability contour, which has an area of 5.8 × 102 deg2.
The white squares show the locations of the 30 IPTA pulsar baselines used as
detectors.

(A color version of this figure is available in the online journal.)

example. In each case, our “source” has a waveform character-
istic of the parabolic encounter of two 109 M� black holes, with
impact parameter 180 M (0.02 pc), orbital plane face-on to the
Earth’s line of sight, and in the direction of the Virgo Cluster
(R.A. 12.5 hr, decl. 12.◦5). Figure 2 shows, in two panels, the
gravitational wave strain incident at Earth (top panel) and the
induced timing residuals in a sample of 6 of the 30 IPTA pulsars
when the source is at a distance of 15 Mpc. We conclude with
a subsection exploring how the analysis performs when applied
to a data set containing no signal at all.

4.3.1. Strong Signal

Figures 2–5 and the first row of Table 2 summarize the
results of applying the methodology described in Section 3 to

a pulsar timing array data set including a strong “flyby” signal,
constructed as described in Section 4.2. In this strong signal
case, the source is placed at a distance of 15 Mpc. The top
panel of Figure 2 shows the strain incident at Earth and the
bottom panel the timing residual induced in a sample of 6 of the
30 IPTA pulsars. Figure 3 shows the same timing residuals,
from the same selection of pulsars, embedded in the “red-
plus-white” timing noise described in Section 4.2.2. For this
strong signal, the gravitational-wave-induced timing residuals
are readily apparent in the quietest of the IPTA pulsars (e.g., top
two panels of Figure 3), less so in the pulsars with moderate
timing noise (middle panels of Figure 3), and much less so
in the pulsars with large timing noise (bottom two panels of
Figure 3).

Applying the analysis described in Section 3.4 to this “strong
signal” data set instance we find (for our particular instantiation
of noise) that the Bayes factor has a value of exp(3.8 × 103),
corresponding to overwhelming evidence for the presence of a
gravitational wave in this data set.

Having concluded that a signal is present, we use the analysis
described in Section 3.3 to localize the source. Figure 4 shows
the results of this analysis as the natural log of the probability
density (in units of rad−2) that the source is in the direction Ω.
Also shown is the smallest contour containing 90% of the total
probability, whose area is much less than 1 deg2.

Finally, having detected the source and localized it on
the sky, we apply the analysis of Section 3.2 to infer the
radiation waveform. Figure 5 shows the result of this analysis,
superposed with the actual radiation waveform. In this example,
the gravitational wave strain is identified with a power signal-
to-noise ratio of 38.

4.3.2. Moderate Signal

Figures 6–8 show the results of applying the methodology
described in Section 3 to a moderate strength “flyby” signal
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Figure 8. Inferred h+ and h× radiation waveforms for the example data set described in Section 4.3.2. While strong enough to be detected, the signal is too weak for
us to infer its waveform.

(A color version of this figure is available in the online journal.)
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Figure 9. Superposition of timing residuals induced by the weak gravitational wave burst, for the same sample of IPTA pulsars shown in the bottom panel of Figure 2,
with the “red + white” timing noise (see Section 4.2.2) characteristic of typical millisecond pulsar timing noise.

(A color version of this figure is available in the online journal.)

Figure 10. Natural log of the inferred probability density (units rad−2) that the
source of gravitational waves present in the “weak signal” simulated IPTA data
set described in Section 4.3.3 is found at location Ω. While strong enough to
be detected, the signal is too weak to be reliably localized: the 90% probability
contour has an area of 4.2 × 103 deg2. The white squares show the locations of
the 30 IPTA pulsar baselines used as detectors.

(A color version of this figure is available in the online journal.)

observed in the current IPTA. In this case, the source is placed
at a distance of 100 Mpc in the direction of the Virgo Cluster.
Figure 2, with the appropriate scaling of the abscissae (i.e., by
15 mpc/100 Mpc), shows the gravitational wave strain incident
on the IPTA and the corresponding induced timing residuals in
a selection of IPTA pulsars. Figure 6 shows the timing residuals,
from the same selection of pulsars as in Figure 2, embedded in
the red-plus-white timing noise described in Section 4.2.2. For
this moderate strength signal, the gravitational-wave-induced
timing residuals are apparent in the quietest of the IPTA pulsars
(e.g., the top two panels of Figure 6), but not apparent in the
residuals of the other pulsars.

Applying the analysis described in Section 3.4 to this data
set we find that the Bayes factor has a value of exp(66), again
corresponding to overwhelming evidence for the presence of a
gravitational wave signal.

Having concluded that a signal is present, we attempt to
localize the source using the analysis described in Section 3.3.
Figure 7 shows the results of our localization analysis as the log
of the probability density (in units of rad−2) that the source is in
the direction Ω. Contours enclosing the smallest area containing
90% of the total probability are also shown. These contours,
which enclose an area of 5.8 × 102 deg2, correctly include the
actual source location.

Finally, having detected the source and localized it on the
sky, we apply the analysis of Section 3.2 to infer the radiation
waveform. Figure 8 shows the result of this analysis, made by
assuming that we know the actual source location, superposed
with the actual radiation waveform. In this example the power
signal-to-noise ratio is 0.87, which confirms the impression
given by the figure that this inference is not significant.

This moderate signal amplitude case shows clearly a regime
where the gravitational wave burst is strong enough to be un-
ambiguously detected and the general direction to the source
clearly identified (even if not so precisely that an optical coun-
terpart may be sought), but not strong enough to characterize
the burst waveform.

4.3.3. Weak Signal

Finally, we consider a data set that includes a signal at the
edge of detectability, i.e., a data set where the Bayes factor
corresponds to 9:1 odds of a signal being present, with results
shown in Figures 9–11. In this case, our binary source is
placed at a distance of 2.6 × 102 Mpc. Figure 2, with the
appropriate scaling of the abscissae (i.e., by 15 kpc/261 mpc),
shows the gravitational wave strain incident on the IPTA and
the corresponding induced timing residuals in a selection of
IPTA pulsars. Figure 9 shows the timing residuals from the
same selection of pulsars as in Figure 2, embedded in white
timing noise with rms given in Table 1. For this weak signal,
the gravitational-wave-induced timing residuals are not readily
apparent even in the quietest pulsars (e.g., top panel of Figure 9).

Applying the analysis described in Section 3.4 to this data set
we find that the Bayes factor has a value of exp(2.2) = 9. At
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Figure 11. Inferred h+ and h× radiation waveforms for the example data set described in Section 4.3.3. While strong enough to be detected, the signal is too weak for
us to infer its waveform.

(A color version of this figure is available in the online journal.)

Figure 12. Natural log of the inferred probability density (units rad−2) that a
source of gravitational waves is present in direction Ω for a data set consisting
only of noise. The 90% probability contour has an area of 1.2 × 104 deg2.
The white squares show the locations of the 30 IPTA pulsar baselines used as
detectors. See Section 4.3.4 for more details.

(A color version of this figure is available in the online journal.)

this level, our prejudice regarding the likelihood of gravitational
wave bursts passing through our timing array plays a critical
role in deciding whether the overall odds—i.e., the product of
the Bayes factor with the “expectation odds”—are in favor of
detection or not. Supposing that they are, we next attempt to
localize the source using the analysis described in Section 3.3.
Figure 10 shows the results of our localization analysis as the
log of the probability density (units rad−2) that the source is
in the direction Ω. In this case, the 90% contour encloses an
area of 4.2 × 103 deg2 scattered about the sky, i.e., the wave,
while strong enough to be detected, is not strong enough to be
localized.

Finally, and for completeness, we apply the analysis of
Section 3.2 to infer the radiation waveform. Figure 11 shows
the result of this analysis, made by assuming that we know the
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Figure 13. Inferred h+ and h× radiation waveforms for a data set consisting
only of timing noise. The inferred waveform corresponds to a signal-to-noise
ratio of 7.8 × 10−2. See Section 4.3.4 for further discussion.

(A color version of this figure is available in the online journal.)

actual source location on the sky, superposed with the actual
radiation waveform. In this example, the power signal-to-noise
ratio is 0.21.

4.3.4. No Signal

Finally, we apply our analysis to a data set consisting of
noise only. In this particular instance the Bayes factor is
exp(−8.4) = 2.2 × 10−4, i.e., overwhelming evidence for the
absence of a gravitational wave burst. For completeness, under
the assumption that a single source is present we show in
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Figure 12 the natural log of the inferred probability density
(units rad−2) for the source location on the sky. In this case,
the 90% confidence interval has an area of 1.2 × 104 deg2, i.e.,
approximately 1/3 of the sky. Lastly, under the assumption that
there is a source in the direction of the Virgo Cluster we attempt
to infer a waveform from this data set. Figure 13 shows the
results of this analysis, which correspond to a power signal-to-
noise ratio of 7.8×10−2. We conclude that the analysis described
here is fully capable of identifying data sets that contain no
evidence of a gravitational wave signal.

5. CONCLUSIONS

In the history of astronomy few (if any) new observational
windows have been as eagerly anticipated as the gravitational
wave window, whose opening will provide us with a novel and
direct view of astronomical phenomena that can now be inferred
at best dimly and indirectly. Making sense of what we see
through this new window requires analysis tools and techniques
adapted to the unique nature of our new “telescopes” and the
sources they enable us to study. Here, we have described an
intra-related suite of analysis techniques for gravitational wave
astronomy designed to address quantitatively the following three
specific questions.

1. What are the “odds” that a gravitational wave detector data
set includes the signal from a gravitational wave burst?

2. Assuming that a gravitational wave burst is present in a
data set, what is the probability density that the wave is
propagating in direction k̂?

3. Assuming the presence of a burst propagating in direction
k̂, what is the probability density that the wave at Earth
is characterized by the functions h+(u) and h×(u), u =
t − k̂ · �x, representing the + and × polarization state
waveforms?

We address these questions in the specific context of grav-
itational wave detection using pulsar timing array data. Until
recently, analyses for gravitational wave detection using timing
data from an array of pulsars have focused on stationary sources,
e.g., a stochastic gravitational wave signal or the signal from a
binary system. By addressing burst sources we also add to the
very recent literature examining how pulsar timing data can be
used to detect gravitational wave bursts (van Haasteren & Levin
2010; Seto 2009; Pshirkov et al. 2010) such as those that might
arise from a close flyby or collision of two SMBHs or from a
cosmic string cusp (Binétruy et al. 2009; Key & Cornish 2009).

To demonstrate the efficacy of our analysis we applied it to
four synthetic timing residual data sets representative of obser-
vations using IPTA (Hobbs et al. 2010). Each data set included
simulated timing noise, constructed to be characteristic of actual
IPTA timing noise. Three of the data sets included the timing
residual signature of a gravitational wave burst characteristic of
a parabolic flyby of two SMBHs; the fourth did not. The three
“signal-present” cases varied only by the gravitational wave sig-
nal amplitude. In the case of the strongest signal, the burst was
unambiguously detected, localized to much better than a deg2,
and the waveform in the individual polarization states was re-
covered. In the moderate signal amplitude case the signal was,
again, unambiguously detected and the general direction to the
source was clearly determined; however, the signal amplitude
was too low to infer the waveform characteristics. In the third
case, the signal was strong enough to be detected but too weak to
be characterized or to allow the source to be localized. Finally, in

analyzing noise alone, the calculated odds were, as they should
be, unambiguously against the presence of a gravitational wave
burst.

At present, pulsar timing array data sets are constructed by
fitting a timing mode to the TOA data for each pulsar. This timing
model includes, in parameterized form, all the non-gravitational-
wave contributions that affect the pulse arrival times. The
residual differences between the timing model predictions and
the actual arrival times are then analyzed for the signature of a
passing gravitational wave. This procedure has the disadvantage
of being incapable of identifying any gravitational wave whose
effect on the arrival time of individual pulsars is degenerate
with any of the non-gravitational-wave effects that are part
of the timing model. Our analysis may be extended to infer,
in addition to the gravitational radiation waveform, the other
timing model parameters. This extended analysis may be applied
to TOA data directly, entirely avoiding the problem of “fitting-
out” gravitational wave contributions whose character is similar
to other timing model contributions. We intend to investigate
this extension in future work.

While our presentation and discussion have focused on
pulsar timing array observations, the analysis methodology
that we describe applies equally well and without modification
to gravitational wave data taken from ground-based detector
networks like the LIGO-Virgo network (Accadia et al. 2010;
Riles et al. 2010), or for the analysis of LISA (Jennrich 2009;
Merkowitz et al. 2009) data.
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the manuscript, and Joe Romano and Nathan Johnson-McDaniel
for a careful reading of the final manuscript. This work was
supported by National Science Foundation grants AST-0748580
(A.L.) and PHY 06-53462 (L.S.F.).
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