33 research outputs found

    Monitoring Results for Pfiesteria piscidida and Pfiesteria-like Organisms from Virginia Waters in 1998

    Get PDF
    Results of an extensive 1998 monitoring program for the presence of Pfiesteria-like organisms (PLO) in Virginia estuaries indicate these dinoflagellates are widely distributed in both the water column, and as cysts in the sediment, however Pfiesteria piscicida was not detected at this time. The highest concentrations of PLO were in estuaries along the Virginia shore line of the Potomac River, and in western Chesapeake Bay estuaries from the Little Wicomico River to the Rappahannock River. The most common PLO included Cryptoperidiniopsis sp. and Gymnodinium galatheanum. The lowest PLO concentrations were at ocean side locations. PLO were also present throughout the water column at stations in the lower Chesapeake Bay, being most abundant in waters above the pycnocline

    Monitoring Results for Pfiesteria piscidida and Pfiesteria-like Organisms from Virginia Waters in 1998

    Get PDF
    Results of an extensive 1998 monitoring program for the presence of Pfiesteria-like organisms (PLO) in Virginia estuaries indicate these dinoflagellates are widely distributed in both the water column, and as cysts in the sediment, however Pfiesteria piscicida was not detected at this time. The highest concentrations of PLO were in estuaries along the Virginia shore line of the Potomac River, and in western Chesapeake Bay estuaries from the Little Wicomico River to the Rappahannock River. The most common PLO included Cryptoperidiniopsis sp. and Gymnodinium galatheanum. The lowest PLO concentrations were at ocean side locations. PLO were also present throughout the water column at stations in the lower Chesapeake Bay, being most abundant in waters above the pycnocline

    Identification of \u3ci\u3ePlanktothrix\u3c/i\u3e (Cyanobacteria) Blooms and Effects on the Aquatic Macroinvertebrate Community in the Non-Tidal Potomac River, USA

    Get PDF
    Using transverse cross-sectional transects, a survey of 31 km of the non-tidal Potomac River was conducted from White’s Ferry, Virginia to Brunswick, Maryland, USA, between June and September in 2013 through 2015 to assess a recurring benthic cyanobacteria bloom. Abundant benthic cyanobacteria blooms were detected during the 2014 and 2015 sampling seasons and the primary taxon was identified morphologically and molecularly as Planktothrix cf. isothrix. When present, P. cf. isothrix blooms were concentrated from river center to the Maryland shoreline. This pattern was correlated with significantly greater benthic chlorophyll-a and phycocyanin concentrations. In an apparent response to the P. cf. isothrix blooms in the study site, aquatic macroinvertebrate community assemblages were significantly different between areas with extensive benthic cyanobacterial growth compared to areas without cyanobacterial growth. Within the P. cf. isothrix mats, the percentage of pollution sensitive taxa was lower and the percentage of pollution tolerant taxa was greater. These data suggest that P. cf. isothrix can act as an ecosystem disruptor through direct impacts to the aquatic macroinvertebrate abundance and community structure within this section of the freshwater, non-tidal Potomac River

    Leveraging multimission satellite data for spatiotemporally coherent cyanoHAB monitoring

    Get PDF
    Cyanobacteria harmful algal blooms (cyanoHABs) present a critical public health challenge for aquatic resource and public health managers. Satellite remote sensing is well-positioned to aid in the identification and mapping of cyanoHABs and their dynamics, giving freshwater resource managers a tool for both rapid and long-term protection of public health. Monitoring cyanoHABs in lakes and reservoirs with remote sensing requires robust processing techniques for generating accurate and consistent products across local and global scales at high revisit rates. We leveraged the high spatial and temporal resolution chlorophyll-a (Chla) and phycocyanin (PC) maps from two multispectral satellite sensors, the Sentinel-2 (S2) MultiSpectral Instrument (MSI) and the Sentinel-3 (S3) Ocean Land Colour Instrument (OLCI) respectively, to study bloom dynamics in Utah Lake, United States, for 2018. We used established Mixture Density Networks (MDNs) to map Chla from MSI and train new MDNs for PC retrieval from OLCI, using the same architecture and training dataset previously proven for PC retrieval from hyperspectral imagery. Our assessment suggests lower median uncertainties and biases (i.e., 42% and -4%, respectively) than that of existing top-performing PC algorithms. Additionally, we compared bloom trends in MDN-based PC and Chla products to those from a satellite-derived cyanobacteria cell density estimator, the cyanobacteria index (CI-cyano), to evaluate their utility in the context of public health risk management. Our comprehensive analyses indicate increased spatiotemporal coherence of bloom magnitude, frequency, occurrence, and extent of MDN-based maps compared to CI-cyano and potential for use in cyanoHAB monitoring for public health and aquatic resource managers

    Phytoplankton composition from sPACE: Requirements, opportunities, and challenges

    Get PDF
    Ocean color satellites have provided a synoptic view of global phytoplankton for over 25 years through near surface measurements of the concentration of chlorophyll a. While remote sensing of ocean color has revolutionized our understanding of phytoplankton and their role in the oceanic and freshwater ecosystems, it is important to consider both total phytoplankton biomass and changes in phytoplankton community composition in order to fully understand the dynamics of the aquatic ecosystems. With the upcoming launch of NASA\u27s Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission, we will be entering into a new era of global hyperspectral data, and with it, increased capabilities to monitor phytoplankton diversity from space. In this paper, we analyze the needs of the user community, review existing approaches for detecting phytoplankton community composition in situ and from space, and highlight the benefits that the PACE mission will bring. Using this three-pronged approach, we highlight the challenges and gaps to be addressed by the community going forward, while offering a vision of what global phytoplankton community composition will look like through the “eyes” of PACE

    Tropomyosin 1: multiple roles in the developing heart and in the formation of congenital heart defects

    Get PDF
    Tropomyosin 1 (TPM1) is an essential sarcomeric component, stabilising the thin filament and facilitating actin's interaction with myosin. A number of sarcomeric proteins, such as alpha myosin heavy chain, play crucial roles in cardiac development. Mutations in these genes have been linked to congenital heart defects (CHDs), occurring in approximately 1 in 145 live births. To date, TPM1 has not been associated with isolated CHDs. Analysis of 380 CHD cases revealed three novel mutations in the TPM1 gene; IVS1 + 2T > C, I130V, S229F and a polyadenylation signal site variant GATAAA/AATAAA. Analysis of IVS1 + 2T > C revealed aberrant pre-mRNA splicing. In addition, abnormal structural properties were found in hearts transfected with TPM1 carrying I130V and S229F mutations. Phenotypic analysis of TPM1 morpholino-treated embryos revealed roles for TPM1 in cardiac looping, atrial septation and ventricular trabeculae formation and increased apoptosis was seen within the heart. In addition, sarcomere assembly was affected and altered action potentials were exhibited. This study demonstrated that sarcomeric TPM1 plays vital roles in cardiogenesis and is a suitable candidate gene for screening individuals with isolated CHDs

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Interactions of E. coli with algae and aquatic vegetation in natural waters

    No full text
    Both algae and bacteria are essential inhabitants of surface waters. Their presence is of ecological significance and sometimes of public health concern triggering various control actions. Interactions of microalgae, macro algae, submerged aquatic vegetation, and bacteria appear to be important phenomena necessitating a deeper understanding by those involved in research and management of microbial water quality. Given the longstanding reliance on Escherichia coli as an indicator of the potential presence of pathogens in natural waters, understanding its biology in aquatic systems is necessary. The major effects of algae and aquatic vegetation on E. coli growth and survival, including changes in the nutrient supply, modification of water properties and constituents, impact on sunlight radiation penetration, survival as related to substrate attachment, algal mediation of secondary habitats, and survival inhibition due to the release of toxic substances and antibiotics, are discussed in this review. An examination of horizontal gene transfer and antibiotic resistance potential, strain specific interactions, effects on the microbial, microalgae, and grazer community structure, and hydrodynamic controls is given. Outlooks due to existing and expected consequences of climate change and advances in observation technologies via high-resolution satellite imaging, unmanned aerial vehicles (drones), and mathematical modeling are additionally covered. The multiplicity of interactions among bacteria, algae, and aquatic vegetation as well as multifaceted impacts of these interactions, create a wide spectrum of research opportunities and technology developments

    Examining the Relationship between Phytoplankton Community Structure and Water Quality Measurements in Agricultural Waters: A Machine Learning Application

    No full text
    Phytoplankton community composition has been utilized for water quality assessments of various freshwater sources, but studies are lacking on agricultural irrigation ponds. This work evaluated the performance of the random forest algorithm in estimating phytoplankton community structure from in situ water quality measurements at two agricultural ponds. Sampling was performed between 2017 and 2019 and measurements of three phytoplankton groups (green algae, diatoms, and cyanobacteria) and three sets of water quality parameters (physicochemical, organic constituents, and nutrients) were obtained to train and test mathematical models. Models predicting green algae populations had superior performance to the diatom and cyanobacteria models. Spatial models revealed that water in the ponds’ interior sections had lower root mean square errors (RMSEs) compared to nearshore waters. Furthermore, model performance did not change when input datasets were compounded. Models based on physicochemical parameters, which can be obtained in real time, outperformed models based on organic constituent and nutrient parameters. However, the use of nutrient parameters improved model performance when examining cyanobacteria data at the ordinal level. Overall, the random forest algorithm was useful for predicting major phytoplankton taxonomic groups in agricultural irrigation ponds, and this may help resource managers mitigate the use of cyanobacteria bloom-laden waters in agricultural applications
    corecore