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Cyanobacteria harmful algal blooms (cyanoHABs) present a critical public health
challenge for aquatic resource and public health managers. Satellite remote
sensing is well-positioned to aid in the identification and mapping of
cyanoHABs and their dynamics, giving freshwater resource managers a tool for
both rapid and long-term protection of public health. Monitoring cyanoHABs in
lakes and reservoirs with remote sensing requires robust processing techniques
for generating accurate and consistent products across local and global scales at
high revisit rates. We leveraged the high spatial and temporal resolution
chlorophyll-a (Chla) and phycocyanin (PC) maps from two multispectral
satellite sensors, the Sentinel-2 (S2) MultiSpectral Instrument (MSI) and the
Sentinel-3 (S3) Ocean Land Colour Instrument (OLCI) respectively, to study
bloom dynamics in Utah Lake, United States, for 2018. We used established
Mixture Density Networks (MDNs) to map Chla from MSI and train new MDNs
for PC retrieval from OLCI, using the same architecture and training dataset
previously proven for PC retrieval from hyperspectral imagery. Our assessment
suggests lower median uncertainties and biases (i.e., 42% and -4%, respectively)
than that of existing top-performing PC algorithms. Additionally, we compared
bloom trends in MDN-based PC and Chla products to those from a satellite-
derived cyanobacteria cell density estimator, the cyanobacteria index (CI-cyano),
to evaluate their utility in the context of public health risk management. Our
comprehensive analyses indicate increased spatiotemporal coherence of bloom
magnitude, frequency, occurrence, and extent of MDN-based maps compared to
CI-cyano and potential for use in cyanoHAB monitoring for public health and
aquatic resource managers.
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1 Introduction

Cyanobacteria have been on the planet for over 3 billion years (Schopf, 2002; Paerl &
Huisman, 2009) and are ubiquitous in nearly all freshwater environments (Chorus &
Welker, 2021). Their ability to adapt to changing environmental, meteorological, and
landscape conditions has allowed them to not only survive, but also thrive in the face of
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climate change and anthropogenic pressures, such as dam
construction, deforestation, watershed urbanization, and
increasing agricultural activities (Paerl & Huisman, 2009;
Nwankwegu et al., 2019). Through a variety of triggers and
environmental drivers (Hudnell, 2008), and in conjunction with
the cyanotoxins produced by specific cyanobacteria species (Davis
et al., 2019), these prokaryotic organisms can proliferate at a high
rate across freshwater lakes, reservoirs, ponds, and streams and
cause what are colloquially known as cyanobacteria harmful algal
blooms (cyanoHABs). Similar to freshwater eukaryotic algal blooms,
cyanoHABs can disrupt ecosystem functions and negatively impact
water quality through changes in turbidity, dissolved oxygen, and
aquatic food webs (Šulčius et al., 2017). However, what distinguishes
cyanoHABs in being distinctly more dangerous from their
eukaryotic counterparts is the production of cyanotoxins (Rantala
et al., 2004).

Cyanotoxins are produced by many, but not all, cyanobacteria
species (Salmaso et al., 2016) and pose a significant health risk to
humans and animals that come into contact with them (Chorus &
Welker, 2021). CyanoHABs may be increasing in frequency and
magnitude globally (Oliver et al., 2017; Ho &Michalak, 2020; Coffer
et al., 2021; Plaas & Paerl, 2021) and are a critical public health
challenge for aquatic resource managers, drinking water utilities,
and agricultural communities who rely on surface water as an
essential resource. National and world health agencies, such as
the U.S. Environmental Protection Agency (US EPA) and World
Health Organization (WHO), provide guidance on monitoring,
sampling, analysis, and management related to cyanoHABs
(World Health Organization, 2003; USEPA, 2019; Chorus &
Welker, 2021). For example, the WHO recommends sampling
and acting upon both cyanotoxin concentration and
cyanobacteria biomass and provides qualitative and quantitative
thresholds for when management interventions should be
considered (Chorus & Welker, 2021). In order to protect public
health and act upon recommended health guidelines, managers
must first be able to characterize short- and long-term risk for a
given waterbody or cyanoHAB event. The presence and
quantification of cyanotoxins and toxigenic cyanobacteria can be
determined and measured both in the field with rapid assays
(Aranda-Rodriguez et al., 2015) and water quality sensors
(Bowling et al., 2016) and with laboratory methods after field
sample collection (Mountfort et al., 2005; MacKeigan et al.,
2022). Most often, a suite of multiple methods are employed by
managers and scientists to best protect the public from cyanoHABs
and potential illnesses (USEPA, 2019).

The broad purpose of this study is to advance the quality of
satellite-derived cyanobacteria biomass that can reliably assess
cyanoHAB risk so that aquatic resource and public health
managers have the most spatiotemporally coherent picture of a
cyanoHAB event on a given day, season, or across years, allowing
them to balance public health and aquatic resource protection with
other stakeholder pressures. More specifically, this study has several
research objectives, ranging from algorithm development to risk
management applicability. First, we aimed to develop and test a
mixture density network (MDN) model for phycocyanin (PC)
estimation (hereafter MDN-PC) (O’Shea et al., 2021) from
images of the Ocean and Land Colour Instrument (OLCI) aboard
the Sentinel-3 (S3) mission. This model was trained with in situ data

from a variety of freshwater aquatic ecosystems and applied to OLCI
images over Utah Lake, United States in the year 2018. Once our PC
model was applied to Utah Lake, in the absence of direct PC in situ
matchups, we analyzed the quality of our satellite-derived PC
products and time series against in situ cell density matchups
and the Cyanobacteria Assessment Network (CyAN) maps
generated using the cyanobacteria index (CI-cyano) (Schaeffer
et al., 2015; Schaeffer et al., 2018). Our third objective was to
assess how our MDN-PC model could help to better characterize
recreational risk assessment from daily cyanoHABs in a
spatiotemporally coherent manner. We did this through both
spatial and temporal comparisons of our maps of cyanobacteria
biomass estimations of PC to both in situ values and CI-cyano maps
through the lens of WHO risk assessment categories for a lake-wide,
season-long cyanoHAB that occurred on Utah Lake in 2018. Lastly,
we explored the use of machine-learning-derived chlorophyll a
(Chla) from the Sentinel-2 (S2) MultiSpectral Instrument (MSI)
imagery in conjunction with OLCI-derived PC products with the
goal of augmenting spatiotemporal risk assessment in areas such as
marinas and beaches that OLCI data cannot reliably capture due to
constraints in spatial resolution.

2 CyanoHAB sampling and analysis

2.1 Cyanotoxins

Both cyanotoxins and cyanobacteria abundance can be used
independently or together to estimate the magnitude and associated
public health risk of a cyanoHAB. Currently, the most reliable and
consistent methods for estimating sampled cyanotoxins occur in the
laboratory using methods such as enzyme-linked immunosorbent
assays (ELISA) or liquid chromatography triple quadrupole mass
spectrometry (LC/MS) (Graham et al., 2010; Loftin et al., 2016).
There are also several rapid assay test kits available to detect the
presence of cyanotoxins in water that can be performed in the field
while sampling a bloom, providing results in minutes. While these
rapid test kits can provide quick data turnaround and yield sample
prioritization for laboratory analysis, they rely on visual (qualitative)
assessment for interpreted quantitation, have high false positive
rates, and can be relatively costly (Humpage et al., 2012; Aranda-
Rodriguez et al., 2015). Field and laboratory analyses of cyanotoxins
in discrete spatial and temporal samples only reflect one piece of the
puzzle when evaluating the continuous public health risk for a given
waterbody. For example, several common cyanotoxins, such as the
neurotoxin anatoxin-a, undergo swift degradation in sunlight, with a
half-life of fewer than 2 h in ambient environmental conditions
(Stevens &Krieger, 1991; USEPA, 2015), and if field sampling occurs
after degradation in one location, cyanotoxin exposure risk for the
entire waterbody may be underestimated or mischaracterized.
Additionally, the exact environmental conditions in which
cyanobacteria cells become toxigenic is still unclear (Boopathi &
Ki, 2014), therefore there may be a future risk of cyanotoxin
production even if toxins are not detected within a bloom at any
given point in time or space (Maske et al., 2010). Adding an
estimation of cyanobacteria abundance to sampling and decision-
making criteria allows for a more comprehensive evaluation of
bloom characteristics and evaluated public health risk.
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2.2 Cyanobacteria abundance

Augmenting cyanoHAB monitoring with spatial and temporal
cyanobacteria abundance estimation not only allows for a direct link
to evaluate cyanotoxin exposure risk through known relationships
between toxigenic cyanobacteria cell densities and associated
cyanotoxins (Pilotto et al., 1997), but also helps characterize how
the bloom may be changing in magnitude, extent, and location.
Unlike cyanotoxins, there are many methods of estimating
cyanobacteria abundance at different spatial, temporal, accuracy,
and precision scales. Similar to cyanotoxins, cyanobacteria
abundance and taxonomy can be measured in the lab or in the
field. Beyond traditional microscope-based manual species
identification and cell enumeration, a common laboratory
technique includes digital imaging flow cytometry, in which a
flow cytometer captures images of individual cells and then
compares and matches them to a database for digital image
analysis (Sieracki et al., 1998; Buskey & Hyatt, 2006; Sosik &
Olson, 2007). Newer laboratory methods, such as qPCR, utilize
gene-based approaches to quantify how many toxin-producing
cyanobacteria cells exist within a given sample, allowing for more
accurate and precise characterization of bloom toxicity and risk
(Pinto et al., 2012; Fortin et al., 2015).

In the absence of direct cyanobacteria cell density enumeration
in the laboratory, proxy measurements of algal pigments have been
shown to be both cost-effective and accurate measures of
cyanobacteria abundance. These proxy metrics include
measurements of cyanobacteria cell pigments Chla (Loftin et al.,
2016) and PC (Brient et al., 2008). Like other photosynthetic
organisms, cyanobacteria contain Chla; however, unlike their
eukaryotic counterparts, freshwater cyanobacteria also contain
significant quantities of phycocyanin (Tandeau de Marsac, 2003;
Chorus & Welker, 2021). To estimate cyanobacteria biomass, both
pigments can be measured in the lab and in the field through
fluoroscopy and spectrometry, with phycocyanin providing a more
accurate representation of cyanobacteria abundance within a mixed
assemblage of phytoplankton (Brient et al., 2008; Yoshikawa &
Belay, 2008; Loftin et al., 2016; Hodges et al., 2018). Using
pigment analysis, hand-held sondes, and autonomous, high-
frequency sondes on buoys can help characterize cyanoHABs at a
larger spatiotemporal scale, yet still lack the ability to fully map a
cyanoHAB in its spatial and temporal entirety.

2.3 Optical remote sensing

According to the fundamentals of aquatic optics, the optical
properties of pigments and their concentrations, together with other
optically relevant materials present in the water column, govern the
shape and magnitude of spectral water-leaving radiance (Lw) that
can be measured with field-based or space-borne spectro-
radiometers (Mobley, 1994; Bukata et al., 1995). Satellite remote
sensing is hence well-positioned to aid in the identification and
understanding of cyanoHABs and their dynamics over time (Dekker
et al., 1996; Kutser, 2004; Simis et al., 2005), giving freshwater
aquatic resource managers a complementary tool for both rapid and
long-term protection of public health. This has been made possible
by examining characteristic spectral features of phycocyanin

(i.e., absorption peak ~620 and fluorescence signature ~650 nm)
that manifest in Lw. Recently, there have been several open-source
tools developed to continuously identify and track cyanoHABs and
other algal blooms with remote sensing satellite data, including the
CyAN (Schaeffer et al., 2018), EOLakeWatch (Binding et al., 2021),
and CyanoTRACKER (Mishra et al., 2020); all allowing aquatic
managers to track blooms and/or estimate cyanobacteria abundance
across large geographic areas and through time—services invaluable
to many agencies that do not have the resources to regularly sample
for cyanotoxins or cell densities in order to protect public health.
These satellite-based cyanoHAB tracking web interfaces use a
variety of proxy measurements and algorithms to monitor and
track blooms across time.

2.3.1 Chla estimation
Chla, which is common to all phytoplankton types and can be

approximated from satellite-derived Lw (Gitelson et al., 2007;
O’Reilly & Werdell, 2019), has been the most widely used proxy
pigment to study and monitor trophic state (Hu et al., 2004) or
cyanoHABs (Park et al., 2010). Chla has been used to monitor
cyanoHABs on satellite missions such as Landsat, MEdium
Resolution Imaging Spectrometer (MERIS), MODerate Resolution
Imaging Spectroradiometer (MODIS), MSI, and OLCI.

With both in situ sensors and well developed laboratory
methods for Chla quantification (Sartory & Grobbelaar, 1984),
some studies and applications are able to utilize empirical and
semi-empirical models to correlate Chla field measurements
directly to remote sensing reflectance (Rrs), defined as the ratio of
Lw and downwelling irradiance (Ed) just above the water (Mobley,
1999), for robust analysis and Chla estimations (Moses et al., 2009).
However, while empirical models may perform well in the specific
area or waterbody that in situ data were collected, they tend to
perform poorly when applied across waters of differing conditions
(Lee et al., 2002). If Chla retrieval algorithms are developed for
application across multiple sensors, different locations, and waters
with differing optical properties, analytical and semi-analytical
models often perform better than locally/regionally empirical
models by first deriving the absorption and backscattering
properties of water and its constituents from Rrs (Werdell et al.,
2018) and subsequently predicting Chla (Moses et al., 2009).

Historically, based on the broadly defined water-type
classification, i.e., case I versus case II (Mobley et al., 2004),
different retrieval algorithms use different band ratios and
combinations. For example, the Maximum Chlorophyll Index
(MCI) (Gower et al., 2005), a three-band algorithm that uses the
amplitude of the spectral reflectance curves of three red through NIR
bands to predict Chla, performs best in productive or eutrophic
waters (Binding et al., 2013). Similarly, a study by Chen et al. (2011)
demonstrated that a three-band model can effectively estimate Chla
concentration in turbid and productive waters, particularly as the
concentration increases. Another example is the normalized
difference chlorophyll index (NDCI) (Mishra & Mishra, 2012),
which is a simpler, two-band ratio to estimate Chla that uses red
and NIR spectra and assumes that absorption in the red spectra is
dominated by phytoplankton, and absorption in the NIR spectra is
dominated by pure water absorption (Dall’Olmo & Gitelson, 2005).
The blue-green band ratio is another proxy that has been employed
to estimate Chla, but performs poorly in optically complex waters
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(Le et al., 2013). To help further inform cyanoHAB management
decisions, some studies take the satellite-based estimation of Chla
and link it directly to absolute values of cyanoHAB abundance,
which can then be used by managers to evaluate cyanotoxin
exposure risk. This can be done through absolute Chla
estimations (mg m−3) (Matthews et al., 2012; Moradi, 2014;
Palmer et al., 2015) or cyanobacteria cell density (cells mL−1)
(Hunter et al., 2010; Wynne et al., 2010; Stumpf et al., 2012;
Lunetta et al., 2015).

Despite its historic value and a breadth of options in band
combinations and algorithms, there are several issues with using
Chla for monitoring cyanoHABs in aquatic environments outside of
spectral consistency across waterbodies. The major concern comes
from the conflation of the spectral signature of non-toxic eukaryotic
phytoplankton, which also displays high Chla values, with the
spectral signature of cyanoHABs (Stumpf et al., 2016). In a best-
case scenario for the use of Chla for monitoring cyanoHABs, bloom
biomass would be composed either entirely or predominantly by
toxic cyanobacteria, yielding an accurate depiction of perceived
public health risk in a given aquatic environment. Conversely, in
a worst-case scenario of using Chla as a proxy pigment to
cyanobacteria abundance, bloom biomass may be comprised
primarily by eukaryotic phytoplankton, thusly misrepresenting
and potentially overestimating the public health risk of cyanotoxin
exposure. For political, social, and economic reasons, public health
and aquatic resource managers must strike a balance between under-
and over-protection when it comes to risk assessment of cyanoHABs
for a given waterbody. Issues associated with satellite-based Chla
cyanoHAB monitoring and the potential for overestimating
cyanobacteria biomass and extent are one reason preventing the
wider-spread use of remote sensing as a tool for protecting public
health in aquatic ecosystems (USEPA, 2019).

2.3.2 PC estimation
While Chla has many advantages as a proxy measurement for

bloom magnitude and extent, chief among them being availability
and a long history as a water quality indicator, PC prevails over its
pigment counterpart in its precision for targeting cyanobacteria
among other photosynthetic biomass (Randolph et al., 2008; Hunter
et al., 2009). However, in contrast to Chla, far fewer satellite
instruments contain the spectral resolution capable of specifically
capturing the orange spectra (590–635 nm) that is distinct to
detection and quantification of PC, which has an absorption peak
at ~ 620 nm and fluorescence at ~ 650 nm (Dekker et al., 1992; Lee
et al., 1994; Poryvkina et al., 1994; Zolfaghari et al., 2022). Two
satellite sensor platforms, in particular, have carried the weight of
targeting the orange spectra in the past two decades. First, the
European Space Agency’s (ESA’s) Medium Resolution Imaging
Spectrometer (MERIS) was operational from 2002 to 2012 and
its bands 6 and 7 at 620 and 665 nm wavelengths made it close
to ideal for cyanobacteria distinction (Kutser et al., 2006) and has
yielded numerous studies and algorithms targeting phycocyanin
(Mishra & Mishra, 2012; Qi et al., 2014; Lunetta et al., 2015). Its
successor to phycocyanin monitoring, the Copernicus OLCI on-
board the S3 satellite was launched in 2016 and has since generated
even further advances in monitoring cyanobacteria and cyanoHABs
through PC capture (Woźniak et al., 2016; Beck et al., 2017;
Ogashawara, 2019; Ogashawara & Li, 2019; Miao et al., 2020).

While multispectral algorithms (MAs) exist for PC retrieval,
their efficacy for application to optically distinct regions from
multispectral satellite sensors (with the increased uncertainties in
their products) is limited. Standard PC algorithms rely on only a
couple of band ratios near phycocyanin’s spectral features, which
results in an overestimation of the PC from mixed phytoplankton
communities with low in situ PCs (Schalles & Yacobi, 2000; Simis
et al., 2007; Ruiz-Verdú et al., 2008; Ogashawara, 2020). One reason
for the poor performance of PC retrieval algorithms in mixed
phytoplankton communities is the impact of varying ratios of
accessory pigments (e.g., chlorophyll b, chlorophyll c1, and
chlorophyll c2) on the spectral bands used for PC retrieval (e.g.,
620 nm, 650 nm, (Sathyendranath et al., 1987; Ficek et al., 2004;
Simis et al., 2007). Additionally, PC retrieval accuracy is further
limited by the absorption by colored dissolved organic matter
(CDOM) at 620 nm (Mishra et al., 2013; Liu et al., 2018). More
complex semi-analytical and semi-empirical models can correct for
these factors while using in situ Rrs through additional assumptions
and additional bands in the green and near-infrared (Mishra et al.,
2009; 2013; Liu et al., 2018; Ogashawara & Li, 2019), however, these
algorithms have not been rigorously tested on optically distinct
regions using satellite imagery. One example open-source tool for
cyanoHAB mapping, CyanoTRACKER, can provide real-time
bloom monitoring from both in situ and satellite observations,
but the products lack in situ validation and calibration (Mishra
et al., 2020), limiting their utility for risk assessment. Validating PC
retrievals from multispectral satellite imagery is critical for assessing
their efficacy, as satellite imagery exhibit uncertainties in the remote
sensing reflectance (σ( Rrs)) due to instrument noise and the
atmospheric correction process itself, which can result in large
uncertainties (e.g., 25%–70%) in the calculated products
(Pahlevan et al., 2021a). Therefore, a new PC retrieval algorithm
is required for cyanoHAB mapping that 1) advances PC retrievals
from low cyanobacteria biomass waters, 2) performs well in a wide
range of optically distinct aquatic regions, and 3) is rigorously tested
on σ( Rrs) within multispectral satellite imagery.

O’Shea et al. (2021) demonstrated a machine learning algorithm
leveraging a set of highly correlated band ratios from hyperspectral
Rrs that 1) which increased accuracy at low concentrations, 2) was
validated over a range of optically distinct regions, and 3) was
validated on high σ( Rrs) typical of hyperspectral satellite imagery.
Therefore, an adaptation of this algorithm for multispectral satellite
imagery with the 620 nm band, and further testing the algorithm on
derived Rrs using in situ matchups, could fill the need for a
multispectral PC retrieval algorithm that can represent the full
bloom life cycle over a range of optically distinct scenarios.

2.4 Multimission cyanoHAB monitoring

Existing multispectral satellite sensors (OLCI) with the
appropriate bands for PC estimation (620 nm) have a spatial
resolution (300 m) that is limiting for certain water quality
management tasks. First, only 5% of US lakes can be represented
by a 300 m pixel resolution (Clark et al., 2017), so only the largest
lakes will be able to use PC as a proxy for cyanobacteria biomass.
Second, the nearshore coastal regions (<300 m from the shoreline)
of lakes cannot be assessed by coarse-resolution sensors, as the
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optically shallow and shoreline pixels may be mixed with nearshore
pixels. While open-water pixels can be used as a proxy for nearshore
regions, direct measurements of the target area could allow for more
accurate risk assessment, due to factors such as wind-driven scums
which can contain a thousand-fold or greater concentration of
cyanobacteria cells than open-water areas (Chorus et al., 2000).

Although Chla is less specific to cyanobacteria biomass than PC,
the bands required for Chla estimation are available on higher
spatial resolution satellites. Therefore, instead of only estimating one
product from one satellite, a combination of different satellite
sensors could instead be used to achieve the spatial resolution
required for monitoring open bloom and nearshore waters. For
example, PC can be calculated from open-water regions using the
coarse-resolution OLCI, while Chla is calculated in nearshore
regions using the high-spatial resolution MSI. As an added bonus
to monitoring both nearshore coastal waters and open-water
regions, this multimission approach can also increase the
temporal coverage in open-water regions, as the two satellite
missions may overpass on different days. However, using two
different proxies for cyanobacteria biomass requires in situ
validation for utility in water quality risk management applications.

3 Methods

3.1 Study area

Utah Lake is located inUtahValley, Utah, United States of America,
and at 38,400 ha in spatial area, is one of the largest natural, freshwater
lacustrine systems in the western US (Ehlo et al., 2019) (Figure 1). Utah
Valley’s climate is semi-arid and receives little precipitation throughout
the year, so the majority of hydrologic inflow into Utah Lake comes
from snowmelt runoff from the eastward adjacent Wasatch Mountains
(Fuhriman et al., 1981). Despite its large surface area, Utah Lake is
relatively shallow, with an average depth of roughly 2.75 m and a
maximum depth of 4.25 m (Fuhriman et al., 1981). Utah Lake is a
popular recreation stop with approximately 150,000–200,000 visitors
each year, acts as an irrigation source for roughly 20,000 ha of
agriculture (Abu-Hmeidan et al., 2018), and is endemic habitat for
the endangered June sucker (Chasmistes liorus) fish species (Billman &
Crowl, 2007). Because of its shallow depth, numerous nutrient-loading
sources, and the hot, dry summers of Utah, Utah Lake is highly
susceptible to eutrophication, which is most often visible in the form
of dense cyanobacteria blooms (UDWQ, 2007; Page et al., 2018).

FIGURE 1
Utah Lake in Utah Valley, United States with in situ cell density sampling locations designed and visited by Utah DEQ. Select sampling locations (red
labels) are displayed in Figures 6, 8. Satellite products from a stacked transect (red points) passing through stations 12, 15, 20, and 23 are shown in
Hovmӧller diagrams (see Figure 7).
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Widespread cyanoHABs on Utah Lake have been
programmatically monitored by the Utah Department of
Environmental Quality (Utah DEQ) and the Utah Department of
Health (Utah DOH) since 2014 but have been a known issue since at
least 1972 (Strong, 1974). Utah DEQ has used satellite imagery from
a variety of sources as an internal screening tool to strategize
sampling locations on Utah Lake and to communicate bloom
extent and magnitude to local public health managers since 2016.
These data have shown to be a valuable resource for monitoring
cyanoHABs in Utah Lake; Stroming et al. (2020) found that early
detection of a Utah Lake high magnitude cyanoHAB through
satellite imagery saved roughly $370,000 in health care costs by
reducing the public’s risk of exposure to cyanobacteria and
cyanotoxins. For many years, cyanobacteria blooms on Utah
Lake have started in spring and continued through winter,
making the lake an ideal location for exploring new methods for
mapping spatiotemporally cyanoHAB products from satellite
observations.

3.2 Data assembly

3.2.1 Model development data
The in situ model development dataset (Figure 2) is nearly

identical to the dataset used to train MDN-PC for imagery from the
Hyperspectral Imager for the Coastal Ocean (HICO), covered in full
within O’Shea et al. (2021). The main adaptation made to the MDN-
PC training dataset for OLCI is that the remote sensing reflectance
spectra (Rrs) were resampled with the relative spectral response
functions of OLCI. The in situ training dataset spans a broad
geographic range, including Lake Erie (N = 375), lakes of Indiana
(N = 151), lakes of Spain (N = 125), Dutch lakes (N = 186), the
Curonian Lagoon (N = 63), lakes of Italy (N = 20), and South
African reservoirs (N = 10) (Matthews et al., 2020). The median
Chla, PC, and PC:Chla ratios of the original dataset are 33.4, 14.5,
and 0.48 respectively (Figure 2). Any PC or Chla in the range of

0–0.1 mg m−3 were set to 0.1 mg m−3, to keep the MDN from
concentrating on discerning these nearly indistinguishable (from
a water quality management perspective) concentrations. The
dataset consists of a notably large proportion of low PC and low
PC:Chla measurements (Figure 2), which are necessary for training
the MDN for PC estimation from mixed phytoplankton blooms,
where accessory pigments may impact the spectral signature. A low
proportion of PC measurements from the in situ dataset are above
200 mg m−3, which may limit the ability of the MDN to learn how to
most accurately predict the highest PC concentrations often
associated with high-intensity blooms. Overall, the available
dataset enables the MDN to train on PC across four orders of
magnitude, with a particular focus on low concentrations typical of
early bloom formation, spanning a wide geographic range.

3.2.2 Utah DEQ cyanobacteria in situ data
Utah DEQ has been routinely collecting in situ cyanobacteria

cell density (cells mL−1) data during the recreation season, which
runs from mid-May through October, since 2017. The purpose of
cell density data collection is to informmanagement decisions in the
Utah DEQ and Utah DOH Harmful Algal Bloom Program, which
utilizes cyanobacteria cell density thresholds for recommending
health advisories to local health departments (UDEQ, 2020).
During the recreation season, Utah DEQ monitoring teams
sample Utah Lake either weekly or monthly, depending upon
resources, and collect data at sites in the most frequented
recreation spots along the shoreline, such as beaches and
marinas, and in the open waters of the lake. While some sites are
sampled consistently, Utah DEQ guidelines direct crews to sample
‘the most reasonable maximum’ part of an observed cyanoHAB,
which represents the site of highest risk of exposure to recreators.
This means cell density samples may be biased towards higher
volumes and are not spatially comprehensive for each sampling
event. Both a surface and water column (elbow depth, <1 m)
composite sample can be collected, but not always both for each
sampling site; often surface samples are prioritized if surface

FIGURE 2
Log-scale histograms for in situ PC, Chla, and the PC to Chla ratio (PC:Chla) datasets (N = 930). These histograms are nearly identical to those used
to develop the original HICO MDN (O’Shea et al., 2021). The median, mean, and standard deviation for Chla, PC, and the PC:Chla ratio are (33.4, 45.6,
59.5), (14.5, 49.9, 107.3), and (0.48, 0.83, 0.91) mg m−3, respectively.
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cyanobacteria scum is observed whereas composite samples are
taken either concurrently with surface samples or singularly if no
surface scum is observed. Taxonomic analysis and cell enumerations
of all phytoplankton taxa are performed by PhycoTech, Inc.
(St. Joseph, MI, United States) using a McClane Research
Laboratories, Inc. (East Falmouth, MA, United States) Imaging
FlowCytobot, a semi-automated imaging system, and reported in
units of cells mL−1. For this analysis, only cell concentrations of
cyanobacteria taxa were used as a proxy measurement for in situ PC
concentrations. Additionally, only data that were collected
within ±4 h of OLCI and MSI overpass were used in this study.
Utah DEQ also uses stationary, high-frequency (every 15 min)
water-quality sondes on buoys in Utah Lake that collect both
chlorophyll and a blue-green algae phycocyanin proxy
measurements, but these data were not used in this study as
sonde sensor calibration methods were inconsistent.

3.2.3 Satellite data processing
The OLCI and MSI imagery is processed to Rrs using the

atmospheric correction for OLI ‘lite’ (ACOLITE, (Vanhellemont
& Ruddick, 2021)) algorithm, which has proven to operate
reasonably well for highly turbid and eutrophic inland waters
(Pahlevan et al., 2021b), i.e., 20%–25% median uncertainties in
the green and red bands. Two different versions of ACOLITE
were used during processing, as the processing routine was
updated while imagery was being processed. Both ACOLITE
versions used in this manuscript were from prior to the updates
provided in ACOLITE version V20221025, which fixed OLCI
imagery being corrected for gas transmittance twice by ACOLITE
and switched to applying the system vicarious calibration (SVC)
gains from the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) gains by default (as per
the ACOLITE User’s Manual V20221025). The flag masks were
empirically adjusted to return a higher proportion of pixels for the
highly reflective waters of Utah Lake (Supplementary Appendix
Figure SA1). The ‘L2w_mask’ threshold (applied at 1,600 and
1,020 nm for MSI and OLCI respectively) was set to 0.25
(unitless reflectance) and the ‘l2w_mask_high_toa_threshold’
applied to the TOA reflectance was set to 0.5 (unitless
reflectance). The MSI target resolution was set to 60 m, to match
the spatial resolution of the coarsest band (443 nm) used as input to
MDN-Chl. Additionally, the ‘l2w_mask_smooth’ feature was turned
off, to increase nearshore coverage. The number of valid aquatic
pixels was further increased by empirically tuning the atmospheric
flags to the specific aquatic signal of Utah Lake. Note that no
radiometric spectra were available across Utah Lake for
evaluating the quality of ACOLITE-derived Rrs products (see
Supplementary Appendix A1 for sample Rrs).

3.3 Machine learning-derived PC estimation

Although other machine learning algorithms have been used for
remote sensing of water quality (ex: Chen et al., 2021), for this study,
we chose to use MDNs for predicting Chla and PC from satellite
imagery. Prediction of Chla and PC from satellite imagery can be a
complex task since these pigment values can vary due to a number of
biotic and abiotic factors. Traditional machine learning models may

struggle to deal with situations where the same reflectance value
from remote sensing data corresponds to different pigment values
under different conditions; known as the one-to-many problem
(Bishop, 1994). Instead, an MDN can model the pigment value as a
mixture of different probability distributions, each representing a
different possible scenario. Then, when given a remote sensing
reflectance value, the MDN can better account for variability and
uncertainty in predicting pigment values, potentially leading to
more accurate and robust predictions.

MDNs have been developed and proven for a variety of aquatic
remote sensing product retrieval tasks from inland and coastal
waters using multiple different sensors, including Chla retrieval
fromMSI, OLCI, and the Operational Land Imager (OLI) (Pahlevan
et al., 2020; Smith et al., 2021), the retrieval of phytoplankton
absorption (aph) from the Hyperspectral Imager for the Coastal
Ocean (HICO) (Pahlevan et al., 2021a), particulate backscattering
retrieval from six different satellite sensors (Balasubramanian et al.,
2020), and PC retrieval from HICO and the PRecursore
IperSpettrale della Missione Applicativa (PRISMA) (O’Shea et al.,
2021). Clearly, MDNs are effective at retrieving a variety of different
products for aquatic remote sensing tasks, even though the problem
is non-unique and in situ training data is relatively limited.

For this research, two different MDNs were utilized, one MDN
proven for Chla retrieval fromMSI (Pahlevan et al., 2020) (hereafter
MDN-Chl) and anotherMDN retrained for PC retrieval fromOLCI.
The Chla retrieval MDN trained for MSI was previously shown to
achieve high accuracy Chla estimates, with a median absolute
percentage error (MAPE) of 24% on the held-out in situ training
dataset (Pahlevan et al., 2020). The MDN-PC for OLCI was trained
using an identical architecture and nearly identical training set as the
original PC retrieval MDN proven for HICO and PRISMA, but with
the in situ spectra resampled to match OLCI (O’Shea et al., 2021).
Another difference in the model development was the selected band
ratios and line heights; the MDN-PC model leverages the 13 highest
correlation band ratios in the 510–720 nm range (with a cutoff of
0.35) and the line-height centered at 673.75 nm (using the
surrounding bands at 665 nm and 681.75 nm) as input features.
The exact band ratios used were: [560, 510], [664, 510], [664, 619],
[673, 664], [681, 510], [681, 664], [681, 673], [708, 510], [708, 560],
[708, 619], [708, 664], [708, 673], and [708, 681]. The 510–720 nm
range used as input for PC estimation was chosen to avoid the
particularly high uncertainties in the blue bands that occur during
atmospheric correction of the hyperspectral imagery it was
originally trained for (Ibrahim et al., 2018); while the full range
for MSI (443–783 nm) was used for Chla estimation (Pahlevan et al.,
2022). Overall, both of these retrieval algorithms have been
rigorously tested in prior research, and proven to provide
improvements in Chla (MDN-Chl) and PC (MDN-PC) retrievals
from optically complex inland waters. It should be noted that our
previous research suggests that for estimating a single target variable
like Chla (or PC), the choice of model architecture does not
drastically boost the performance (Smith et al., 2021).

Although MDN-PC trained for HICO bands has been
rigorously tested, in this work we further tested MDN-PC
trained for OLCI-like Rrs (and its derivative indices) to
demonstrate that the lower number of bands available on
OLCI (and lack of 650 nm band) do not significantly limit
algorithmic performance. MDN-PC trained for OLCI bands
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was validated on one-half of the in situ dataset, by first training an
independently selected half of the dataset (~465 samples) and
then testing on the other half (see Figure 3). While this is an
idealized performance assessment, since the samples originate
from the same field campaigns and do not suffer from
atmospheric correction uncertainties associated with satellite
imagery; the 50/50 split still serves as useful method to
determine if the available in situ dataset and spectral bands
are sufficient to represent the target variable (PC) and to
compare against alternative algorithms performance using the
same approach (O’Shea et al., 2021; Werther et al., 2022). We
gauged the performance of MDN-PC by reporting the median
symmetric accuracy (ε), symmetric signed percentage bias (β),
and slope (S) estimated via the Theil-Sen estimator (O’Shea et al.,
2021), a set of metrics allowing for comparisons with previously
developed models:

ϵ � 100 × (10Y − 1 ) %[ ] where Y � Median log10 PCs/PCi( ))
∣∣∣∣

∣∣∣∣
β � 100 × sign z( ) (10 Z| | − 1) %[ ] where Z � Median log10 (PCs/PCi( ))

where PCs and PCi are satellite-derived and in situ measured PC,
Median is the median operator, ϵ represents the median symmetric
accuracy, and β is the symmetric signed percentage bias.

3.4 MDN performance analysis

A comprehensive assessment of MDN-based pigment estimates
is essential not only to fully understand its strengths and weaknesses,
but also to optimize its use in large-scale monitoring applications.
To that end, multiple approaches including matchup assessments,
time-series analyses, cross-validation, and risk-category evaluations
were considered.

3.4.1 Matchup assessment
Despite the absence of in situ PC data in Utah Lake, we carried

out a correlation analysis between our products (i.e., MDN-PC and
MDN-Chl) and Utah Lake in situ cyanobacteria cell density data
(Section 3.2.2.) to determine how well our predictions correlate with
these in situ measurements. This analysis was similarly performed
for CI-cyano products described below. Similar to Section 3.3, we
reported median log-based metrics (ε, β) and slope to report model
efficiency.

3.4.2 Cross-validation
To compare our OLCI-based MDN-PC maps to the widely used

CI-cyano index, we used data processed through the CyAN
framework (Schaeffer et al., 2015). CyAN provides daily
CI-cyano products for the continental U.S. (CONUS) from
different satellite sensors including MERIS (2002–2012), OLCI-A
(2016-present), and OLCI-B (2018-present) at a 300 m spatial
resolution. Daily CI maps for CONUS in 2018 were accessed
directly through the Ocean Biology Processing Group data
webpage for CyAN data (https://oceancolor.gsfc.nasa.gov/CYAN)
(NASA Ocean Biology Processing Group, 2018) and further masked
to Utah Lake’s spatial extent. For CyAN maps, CI-cyano is provided
as an 8-bit raster with values ranging from 0–255 and flags for data
below threshold detection limits, land, and no data. To focus on
cyanobacteria biomass observations, we masked out all land and all
no-data pixels. The 8-bit digital number (DN) data were converted
to CI-cyano and cyanobacteria biomass estimates of cell density
(cells mL−1) using the equation provided by CyAN for conversion
(CI-cyano = 108 * 10(3.0/250*DN - 4.2)) (NASA Ocean Biology Processing
Group, 2018). It is worth noting that the MDNs have been shown to
outperform several other state-of-the-art algorithms in previous
research (O’Shea et al., 2021).

FIGURE 3
Modeled versus measured PC using one-half of the training set for training the MDN, and the other half for testing the MDN for OLCI on S3. Simis
et al. (2007) estimates were performed using the standard coefficients. Invalid estimates (negative or non-finite for either algorithm or outside of
0.1–1,000 mgm-3, the range of the training data, for MDN-PC) are shown in red. Median symmetric uncertainty (ε), symmetric signed percentage bias (β),
and slope (S) are displayed on the plot of each algorithm.
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3.4.3 Spatiotemporal analysis
The 2018 OLCI and MSI images (May–October) processed via

ACOLITE were reduced to MDN-PC and MDN-Chl time series to
determine the suitability of our retrievals for cyanoHAB
management applications (Figure 6). This year was chosen
because near-weekly in situ cyanobacteria cell density data from
Utah DEQ showed consistent, widespread cyanoHABs through the
entire season, allowing us to evaluate spatiotemporal consistency of
our maps first in comparison to in situ cell density data and second,
against CI-cyano daily maps.

To determine how more spatiotemporally coherent daily maps
of cyanobacteria biomass in Utah Lake could be created we
examined how MDN-PC, MDN-Chl, and CI-cyano predicted
bloom magnitude over time and space. The vastness of Utah
Lake, coupled with the relatively short study period (185 days),
presented a challenge to effectively capturing all spatiotemporal
dynamics in the field sites during the recreation season. Hövmoller
diagrams were used to visualize spatial and temporal variability of
bloom magnitude along select transects and compare individual
field sites over time through the use of a third dimension, bloom
magnitude, represented as a color gradient (D’Ortenzio & Ribera
d’Alcalà, 2009; Hovmöller, 1949). In this study the Hövmoller
diagrams depicted a linear transect running NW to SW across
the lake and intersecting at four individual sites (Figure 1).

Individual diagrams were created representing daily satellite
observations for MDN-PC, CI-cyano, and a composite between
MDN-PC and MDN-Chl. For same-day capture of OLCI-A and -B
imagery, predicted PC values were averaged between the two
sensors. To create the composite diagram, MDN-Chl data were
used to fill in missing observations for MDN-PC. Composites were
made by inserting MDN-Chl data only for days and locations that
did not have data represented by MDN-PC. In cases where MDN-
PC and MDN-Chl data were both available for a given location and
time, MDN-PC was always chosen as the representative data point.
Because each in situ site refers to a discrete geographic coordinate,
differences in pixel size across the three algorithms did not present
an issue.

3.4.4 Risk categories
To evaluate how our MDN-PC estimates compared against in

situ data and CI-cyano for cyanoHAB decision-making applications
over the course of a recreation season, we categorized each
observation for all three data types into risk management
categories. Here, we focused specifically on MDN-PC as the
primary way to evaluate spatiotemporal cyanobacteria biomass
across the entire lake’s sampling locations and omitted risk
categorization of MDN-Chl, which is less specific to
cyanobacteria and was used as a complementary data source in
our multimission framework. Risk management categories are based
on the WHO thresholds for a low, moderate, and high probability of
adverse health effects from exposure to cyanobacteria in recreational
waters (World Health Organization, 2003). The WHO classifies risk
categories by both cyanobacteria cell density and Chla, but they can
also be converted and applied to PC (Bastien et al., 2011; O’Shea
et al., 2021) with “low-risk” defined as cell density <20,000 cells mL−1

and PC values <20.0 mg m−3, “moderate-risk” cell densities of
20,000–100,000 cells mL−1 and PC values 20–95 mg m−3, and
“high-risk” cell densities >100,000 cells mL−1 and PC

values >95 mg m−3. Although Utah DEQ does not currently use
this WHO risk management framework exactly, it has built its
cyanoHAB advisory system around WHO thresholds for several
years (UDEQ, 2020), as do many other states (USEPA, 2019). For
both MDN-PC and CI-cyano, values of zero were included as low-
risk because they represent a recoverable observation, even if they
are below biomass detection thresholds. After risk management
categorization, confusion matrices were created for both MDN-PC
and CI-cyano where in situ data represent the observed/true value
for a given day and site, and the satellite retrievals represent the
predicted values. Same-day in situ and satellite-derived
spatiotemporal pairs (i.e., coincident date and site matches) were
used to evaluate categorical accuracy and error. Here, we define
these as same-day in situ ‘matchups’. Note that the choice for
matchups over broader, same-day data (Section 3.2.2.) was made
to improve the statistical robustness of this risk assessment.

4 Results

4.1 MDN-PC: In situ performance analysis

MDN-PC for OLCI achieved a median symmetric uncertainty
(ε) of 42.1/43.7%, a symmetric signed percentage bias (β) of -4.4/-
2.6, and a slope (S) of 0.822/0.816 on a held-out half of the in situ
training set (Supplementary Appendix Figure S3A,B Figure 3 not
shown because of virtually identical performance). The uncertainty,
bias, and slope generally agreed with the error metrics achieved by
the original MDN-PC developed for HICO bands (O’Shea et al.,
2021), despite the extreme reduction in bands available on OLCI.
While the limited band availability makes the comparison to
multiple models limited, the Simis et al. (2007) algorithm (using
default coefficients) had substantially higher uncertainties, invalid
estimates, and was biased high (particularly at low concentrations).
It is worthwhile to note that O’Shea et al. (2021) showed that tuning
the two coefficients for the Simis et al. (2007) algorithm to the
training half of the dataset offered insignificant improvements in
approximating PC. MDN-PC developed for OLCI bands continued
to provide higher accuracy at lower concentrations (<10 mg m−3),
with lower invalid estimates than multispectral algorithms, even
though fewer bands were available relative to the original model.
Overall, MDN-PC developed for OLCI matched the accuracy of the
original MDN developed using HICO bands and outperformed
alternative PC estimation models available for the limited
number of bands (particularly at low PC).

4.2 MDN-PC comparison to in situ cell
density

We used in situ cyanobacteria cell density to validate a) the
MDN-PC and MDN-Chl products as proxies for cyanobacteria
biomass and b) CI-cyano estimates of cell density (Figure 4). Of
the three retrieved products, MDN-PC products (N = 38) and
MDN-Chl products (N = 36) have the highest Pearson’s
correlation coefficients (R, in log space), at nearly identical values
of 0.72 and 0.74, respectively. Both MDN-PC and MDN-Chl were
able to estimate products across the full dynamic range of available
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in situ cell densities (cell densities from <103–107 cells mL−1),
whereas CI-cyano cell density retrievals (N = 41, with 20 below
threshold estimates) were sparse for waters with low in situ cell
densities (e.g., <~5*104 cells mL−1). At these lower ranges, CI-cyano
begins estimating below threshold values (vertical pink lines,
Figure 4), which correspond to predictions less than
10,000 cells mL−1. These below threshold products predicted by
CI-cyano were excluded from calculation of the correlation
coefficient (R = 0.27). The below threshold estimates of CI-cyano
often underestimated the in situ values, with 17 of the 20 below
threshold estimates having associated in situ measurements above
the ~10,000 cells mL−1 cutoff. Additionally, the CI-cyano response at
higher concentrations is biased high. Overall, MDN-PC and MDN-
Chl both had the best correlation to in situ cell density, and
represented cell densities over the entire dynamic range within
Utah Lake, which is a critical attribute for the detection of
blooms at initiation and peak densities.

4.3 Spatiotemporal cyanoHAB dynamics

The full spatiotemporal variability of cyanoHABs as captured by
MDN-produced maps in 2018 is illustrated in Figures 5, 6. The
temporal coverage spanned fromMay 16, when both Sentinel-2 and
-3 missions overpass Utah Lake, and extended to October 31 when

the bloom monitoring season ended. High PC and Chla
concentrations in the Provo Bay and southern shallow sections of
the lake (Station 0) were detected early in the season. These local
patterns significantly intensified and partially spread into open
waters by early and/or mid-June. Blooms appeared to fluctuate in
magnitude and extent in June and began to persist and expand in
July with high-intensity periods throughout August and the first half
of September. The blooms started to subside towards the end of
September and dissipated at the end of October, although the overall
lake-wide average PC appeared to remain higher than the values
detected in mid-May.

The ability of each of the three algorithms (MDN-PC, MDN-
Chl, and CI-cyano) to represent relative changes and key timings
within bloom formation can further be visually assessed via time
series plots (Figure 6) at specific sampling locations (Figure 1). For
this analysis, nine of the thirty-three available in situ cell density
sampling locations within Utah Lake, for the year 2018, were chosen
for their 1) spatial coverage, 2) in situ measurement abundance and
temporal coverage, and 3) spatial resolution requirement (e.g.,
nearshore Stations 8 and 12, bolded in Figure 6). All three
algorithms responded to changes in situ measured cell densities
above ~5 × 104 cells mL−1. Additionally, all three algorithms
captured peak cell density timings well (Figure 5, Stations 5, 7,
15, and 23). The first major difference between the three algorithms
occurred with product retrievals in waters with particularly low

FIGURE 4
MDN-PC, MDN-Chl, andCyAN retrievals plotted against same-day (±4 h) in situ cell densitymeasurements taken from thirty-three distinct locations
within Utah Lake. CI-cyano satellite-derived cell densities beneath the CI-cyano sensing threshold (10,000 cells mL-1) are represented as vertical lines
(the number of below threshold estimates is shown in brackets after the total number of CI-cyano estimates in the legend). The correlation coefficient
(in log space) in the legend for CI-cyano does not include the below threshold values. A 1:1 line between In Situ Cell Density (x axis) and Satellite
Derived Cell Density (right-hand y axis) is shown as a gray dashed line. The solid curves represent contour lines.
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FIGURE 5
Maps of MDN-PC andMDN-Chl in Utah Lake for 2018. Thesemaps do not represent the full temporal stack of available predictions for eithermodel;
dates were chosen to highlight the ability of MDN-PC andMDN-Chl to capture season-wide bloom dynamics. Dates that overlap with in situ sampling are
labeled in red and sample stations for a given day are marked in black squares; squares are not to scale.
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cyanobacteria cell densities (~102–104 cells mL−1), (Figure 6, Stations
7, 15, and 23). Notably, MDN-PC andMDN-Chl retrievals were less
sparse near to days with in situ cyanobacteria cell densities of
~102–104 cells mL−1 relative to CI-cyano (Figure 6, Stations 7, 15,
and 23). MDN-PC retrievals responded to low cell densities, in
addition to representing bloom peaks (~106–108 cells mL−1),
covering nearly five orders of magnitude, and thereby capturing
the entire bloom life cycle (Figure 6, Stations 7, 15, and 23). The
second major difference between the three algorithms was the ability
of MDN-Chl to offer the best remote observation of cyanobacteria
cell density in nearshore regions (Figure 6, Stations 8 and 12,
bolded), as it relies on MSI imagery, which has a substantially

higher spatial resolution (60 m per our choice of grid cell size,
Section 3.2.3) compared to OLCI’s nominal resolution (300 m).

Across the transect that intersects with four of the Utah Lake in
situ stations (Figures 1, 7), MDN-PC, MDN-Chl, and CI-cyano
showed distinct spatial and temporal patterns, both of which have
reaching consequences for recreational risk management. To further
elucidate the spatiotemporal relationships related to bloom
magnitude between discrete in situ data points and satellite-
derived predictions, in situ data were inserted into each diagram
(Figure 7).

From May through October (left to right), the Hövmoller plots
showed a distinct bloom pattern seen through all three algorithms.

FIGURE 6
Time series of MDN-PC, MDN-Chl, and CyAN (cell-density) products derived from satellite imagery of select in situ cell density sampling sites across
Utah Lake (Figure 1), as well as the corresponding in situ cell density matchups from those locations. The sampling locations are provided on a map of
Utah Lake (Figure 1). The full set of matchups are also available in the appendix (Supplementary Appendix Figure SA2, A3). CI-cyano satellite-derived cell
densities beneath the CI-cyano sensing threshold were set to 100 for plotting convenience.
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The bloom begins to form in the southeast portion of the transect
(near Station 12) and advances northwest (towards the top) through
the transect before spreading throughout the entire transect in
August, increasing in magnitude over time. After peaking in both
magnitude and extent in September, the bloom reduces in
magnitude and only the southeast portions are still affected by
the end of October. While all three algorithms show a similar
spatiotemporal cyanoHAB dynamic for this transect in 2018, the
spatiotemporal aspects of the bloom magnitude differentiate the
algorithms from each other.

MDN-PC first detected the bloom at low magnitude in late May,
with only a few observations predicted within the high-magnitude range
(~80,000 to >100,000 cells mL−1). From August through September,
MDN-PC predicted a patchy and ephemeral highmagnitude bloom for
several days, with bloom magnitudes between PC values of
~38–75 mgm−3 (equivalent to ~40,000–80,000 cells mL−1). After
mid-September, the MDN-PC indicated the bloom was reducing to
lower-magnitude cell concentrations (equivalent to
~10,000–20,000 cells mL−1) through October. MDN-PC matched up
with spatiotemporally coincident and closely adjacent in situ data for
most of the recreation season and accurately predicted low, moderate,
and high magnitude bloom concentrations. However, in September,
MDN-PC underestimated several high-magnitude bloom events at the
labeled in situ site data markers.

Adding MDN-Chl data (Figure 7B) to missing MDN-PC
observations improved the spatiotemporal coherence of MDN-
PC’s ability to track the cyanobacteria bloom dynamics. One of
the biggest improvements came from adding data to a point on the
transect that had no data with MDN-PC alone. For example, Station
12 sits in the spatial context of an inlet that is ~225 m wide, a feature
that OLCI is often unable to resolve because of spatial resolution
constraints. With the addition of MSI data and MDN-Chl, bloom
dynamics can be tracked at this location. MDN-Chl predicted a
high-magnitude bloom in the southeast portion of the transect that
was persistent from May through mid-September, matching with
spatiotemporally adjacent and coincident in situ data. In addition to
spatial augmentation, MDN-Chl also increased the temporal density
of MDN-PC observations, filling in missing data across the
recreation season.

While CI-cyano exhibits the same broad, spatiotemporal bloom
dynamics over the transect and course of the recreation season, it
differs significantly in its capture of spatiotemporal variability of
bloom magnitude. From May through October, CI-cyano predicts
that the majority of the bloom is high magnitude
(≥100,000 cells mL−1) as it moves through the transect and
months. This does not match spatiotemporally adjacent and
coincident in situ data, which show more spatial and temporal
variability in bloom magnitude across the season and across the

FIGURE 7
Hövmoller plots of MDN-PC (A), MDN-PC and MDN-Chl (Methods, Spatiotemporal Analysis) (B), and CI-cyano (C) predictions of bloom biomass
from May through October 2018 for a 39-pixel transect that runs NW (pixel position 0) to SE (pixel position 38) through sites 12, 15, 20, 23 (see Figure 1).
Each cell represents bloommagnitude predictions. In-situmeasurements are overlaid on each plot and outlined in red. Colorbar gradient refers to bloom
magnitude in cells mL-1 but each algorithm is mapped to its corresponding unit (mg-3 for MDN-PC and µg for MDN-Chl).
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transect. Compared to MDN-PC, CI-cyano also does not capture
low-risk bloom magnitude (<20,000 cells mL−1) with the same
precision and predicts the majority of the low-magnitude bloom
areas as below detection threshold, whereas MDN-PC and MDN-
Chl both provided absolute values of bloom magnitude through a
range of PC and Chla.

The number of individual spatiotemporal bloom magnitude
predictions from MDN-PC and CI-cyano were similar, with
MDN-PC performing slightly better. Of the possible

spatiotemporal data points across the 39-pixel transect and
185 days, MDN-PC predicted bloom magnitude 37% of the time
and CI-cyano 36% of the time (including below biomass threshold
observations). When below threshold observations were removed
from CI-cyano, the percentage of total possible spatiotemporal
observations with an absolute value prediction of bloom biomass
was reduced to 16%. When MDN-Chl was added to MDN-PC, the
number of MDN predictions increased by ~38%, predicting bloom
magnitude 51% of the time, significantly augmenting the

FIGURE 8
Risk categorized time series of MDN-PC, MDN-Chl, and CyAN products derived from satellite imagery for select sampling sites from Utah Lake
(Figure 1), with in situ cell density matchups available. Risk categories were set using predefined thresholds, adapted fromWHO recommendations (World
Health Organization, 2003). For categorized time series of all lake sites please see Supplementary Appendix Figure SA2, A3.
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spatiotemporal coherence of monitoring bloom dynamics. MDN-
PC also surpassed CI-cyano in the number of days with any
observations, predicting bloom magnitude for at least one
portion of the transect for 48% of the recreation season,
compared to CI-cyano at 38%. When MDN-Chl was added to fill
missing data to MDN-PC, this percentage rose to 64% of the
recreation season that had at least one observation.

4.4 Risk management categories

MDN-PC and MDN-Chl were better at representing the three
risk categories (low/moderate/high) defined by in situ matchups
(Section 3.4.4.) from nearby dates than CI-cyano data (Figure 8). In
particular, MDN-PC and MDN-Chl performed better at predicting
low and moderate risk categories, while CI-cyano typically
overestimated moderate risk categories and did not produce
products over low-risk categories (Figure 8, Stations 7, 15, and
23). While MDN-Chl captured risk categories quite well at Station
12, which requires a higher spatial resolution than OLCI provides,
MDN-Chl underestimated the high-risk categories at Station 8.
While the categorization is imperfect, MDN-Chl did capture the
general bloom decrease followed by a bloom increase that occurred
at the beginning of July near Station 8 (Figures 5, 6, 8). While MDN-
PC seemed to best represent the low and moderate risk categories,
CI-cyano best captured the high-risk categories. Overall, while
MDN-PC did the best job representing all three risk categories, it
is important to note that these risk categories were chosen based on
WHO levels, which may not be perfectly applicable to each lake, and
likely require region-specific tuning.

In situ data, although limited in space and time, can also be used
as a baseline for comparing algorithm performance from a risk-
management perspective. This can be conducted by leveraging
confusion matrices (Congalton & Green, 1999) and assessing
corresponding accuracy metrics for each algorithm (Table 1).
Confusion matrices of in situ risk categorization matchups show
that MDN-PC performed exceptionally well in predicting low-risk
in situ values 100% of the time with a false negative rate of 0%
(Figure 9A; Table 1). CI-cyano performed fairly well with low-risk in
situ measurement matchups with a 28% false negative rate.
However, all of the false negatives came from misclassifying low-
risk in situ matchups as high-risk, which is the largest categorical
contrast possible (Figure 9B; Table 1). With a false negative rate of
93%, CI-cyano performed worse than MDN-PC with moderate-risk
in situ matchups and misclassified moderate-risk in situ

measurements as low-risk the majority of the time. CI-cyano did,
however, outperform MDN-PC in high-risk in situ measurement
matchup classification, correctly identifying high-risk in situ
matchups 55% of the time. However, of the remaining false
negatives, the majority came from misclassifying high-risk in situ
matchups as low-risk, which is, again, the largest categorical contrast
within the risk categorization schema. MDN-PC had a 79% false
negative rate for high-risk in situ matchups but the majority of the
misclassified matchups were predicted as moderate-risk.

MDN-PC moderately overestimated the number of in situ
matchups predicted to low-risk pixels with a false positive rate of
60% and classified high-risk in situmatchups as low-risk 44% of the
time, representing a wide contrast in risk categorization. Similarly,
CI-cyano had a 75% false-positive rate for predicted low-risk pixels.
For both MDN-PC and CI-cyano, pixels predicted to be moderate-
risk were almost identically split between being true positives for
moderate-risk in situ matchups and false positives predictions of
high-risk in situmeasurements but never low-risk in situmatchups.
However, MDN-PC predicted almost six times more moderate-risk
pixel matchups with in situ measurements compared to CI-cyano.
MDN-PC also outperformed CI-cyano in predicting high-risk pixels
compared to in situ measurements and, unlike CI-cyano, MDN-PC
never misclassified low-risk in situmatchups as high risk, unlike CI-
cyano. Further, CI-cyano had nearly three times more high-risk
predicted pixels than MDN-PC.

Broadly, both algorithms had bimodality in their
spatiotemporal matchup risk-category prediction totals but with
different risk-categories dominating predictions. Out of all
predictions, MDN-PC classified 38% of the matchups as low-
risk, 44% as moderate-risk and only 15% as high-risk. CI-cyano
classified 49% of matchups as low-risk, 44% as high-risk, and only
7% as moderate-risk. Each algorithm had a gap in one category, but
for different categories, which has different implications for risk
management applications. Despite both algorithms having high
true-positive and true-negative accuracies in one risk category but
low in others, MDN-PC outperformed CI-cyano with an overall
accuracy of 47% compared to 41% (Table 1). The overall accuracy
does not capture the variability of risk-category prediction within
the two algorithms in the same precision that examining individual
true-positive and true-negative accuracies achieves. Further, there
are limitations to this accuracy assessment because both
algorithms had less than 40 individual in situ matchups over
the entire recreation season; with a low number of data points
to evaluate, each individual matchup can have a large effect on
accuracy evaluation.

TABLE 1 False-negative (FN) and false-positive (FP) error rates for MDN-PC and CI-cyano and overall accuracy (number of correct predictions out of all total
predictions).

Risk category MDN-PC (FN) CI-cyano (FN) MDN-PC (FP) CI-cyano (FP)

Low 0% 28% 60 75

Moderate 38% 93% 53 67

High 79% 45% 33 39

MDN-PC CI-cyano

Overall Accuracy 47% 41%
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5 Discussion

In this study, we improved upon CyAN’s CI-cyano algorithm
through building on a recently developed machine-learning
technique (O’Shea et al., 2021) and supplemented OLCI-based
PC maps with MSI-derived Chla products for enhanced spatial
resolution along important shoreline areas with MDN-Chl
(Pahlevan et al., 2020).

5.1 Mapping cyanoHABs using MDN-PC and
MDN-Chl on satellite imagery

Moving towards a model that is independently tested and
evaluated in time and space is imperative towards a widely-
applied cyanoHAB mapping technique that can represent the
bloom life cycle in the absence of in situ, laboratory-derived, PC,
or Chla training data. Here we show that both satellite-derived Chla
and PC can serve as a proxy for in situ cyanobacteria cell density
over the entire life cycle of a bloom in Utah Lake, a region outside of
the training set. Both PC and Chla enable a strong representation of
the life cycle of a typical bloom, as seen in the same-day matchups
(Figure 7), by quantifying a change in cell density of ~4 orders of
magnitude (~103–107 cell mL−1). The ability of both proxies to
represent the full bloom life cycle in a new region is further
supported via time series of a bloom with in situ samples at site-
specific locations throughout the lake (Figures 5, 6). The capabilities
of both provide higher fidelity, particularly at bloom onset, relative
to state-of-the-art algorithms (e.g., CI-cyano, Figures 5, 7).

A combination of the MDN-PC and MDN-Chl can be used to
increase the spatial and temporal coverage of cyanoHABs, by
keeping in mind the limitations of each proxy (Figures 6, 9).

Spatially, the main advantage of using both MDN-PC (on OLCI
imagery) and MDN-Chl (on MSI imagery), is to determine the
specificity of MDN-PC for cyanobacteria in open-water areas, and
the finer spatial resolution available via MDN-Chl products for
nearshore coastal regions. Temporally, MDN-Chl (MSI) can fill in
for missed days in the MDN-PC (OLCI) dataset. In same-day
overlaps between MSI and OLCI (ex: Figure 5 dates 5–16 and
8–16), there are distinct (and expected) observed differences in
spatiotemporal bloommagnitude across the lake betweenMDN-Chl
and MDN-PC. It is likely these differences exist from differences in
spectral resolution and band availability between MSI and OLCI,
and the possibility of detecting all photosynthetic biomass, including
eukaryotic species, (seen through MDN-Chl) compared to just
cyanobacteria (distinguished in MDN-PC). Looking closer, the
differences between the two algorithms (Figures 4, 6) suggest that
MDN-Chl overestimates early bloom formation, and
underestimates peak bloom intensity, so while both individually
represent the full bloom life cycle, the absolute differences in using
the two algorithms for management decisions based on risk
assessment still must be explored.

5.2 Management decision implications

Even though the US EPA has only issued guidance for some
cyanotoxins as they relate to recreational exposure, for Utah Lake,
Utah DEQ, and many other recreational cyanoHAB monitoring
programs across the United States, risk management decision
making goes beyond the measurement of cyanotoxins by
necessity and complexity of stakeholder concerns (USEPA, 2019).
With a consistent cyanotoxin sampling routine, Utah DEQ still takes
other factors into account before recommending health advisories to

FIGURE 9
Confusion matrices for MDN-PC (A) and CI-cyano (B). Observed columns refer to risk management categories for in situ data and predicted rows
refer to risk management categories for satellite-derived observations. For the total number of spatiotemporal matchups, N = 38 for MDN-PC and
N=41 for CI-cyano. Annotations refer to the percentage of total observationswith the number of observations per cell in parentheses. The color gradient
in the matrices represents these proportions, ranging from light to dark. Lighter shades correspond to lower proportions (0%), indicating fewer
observations falling within these cells, while darker shades correspond to higher proportions (100%), indicating a larger number of observations. Correctly
predicted cells in this context are darkly shaded diagonal cells, indicating high prediction accuracy by representing a high proportion of total observations.
Incorrectly predicted cells are off-diagonal cells that are darker, as these represent more frequent misclassifications.

Frontiers in Remote Sensing frontiersin.org16

Fickas et al. 10.3389/frsen.2023.1157609

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1157609


local health departments (UDEQ, 2020). Current EPA guidelines
specifically omit metrics of bloom biomass magnitude, bloom
frequency, and bloom extent. However, it is these metrics that
are among the most important that satellite imagery cyanoHAB
monitoring frameworks can provide to augment recreational
resource management.

5.2.1 Bloom magnitude
Bloom magnitude can be characterized in both the spatial and

temporal domains and quantified by measures of cyanobacteria
biomass. Here, we discuss bloom magnitude not as an absolute
measure of peak bloom biomass for a given time period (Mishra
et al., 2019), but rather as the representation of the biomass range
that can be seen through different spatial and temporal scales. We
found that both MDN-PC and MDN-Chl were able to represent
both seasonal and intraseasonal temporal bloommagnitude patterns
seen through the baseline of in situ bloom biomass data. Time series
of individual sites (Figures 5–7) along with Hövmoller plots across
in situ transects (Figure 7A) show that MDN-PC has the same
pattern of low-risk bloom biomass values dominating the shoulder
weeks of the recreation season and high-risk bloom values peaking
August through September. This also fits with widely known
dynamics of cyanoHAB phenology over a given year; as solar
radiation (the number of clear, sunny days), hours of sunlight,
and water temperatures all increase towards mid to late summer,
cyanobacteria can outcompete other photosynthetic organisms and
bloom in relative abundance, creating the highest public health risk
under these conditions (Zhang et al., 2012; Coffey et al., 2019).

Knowing when and where the areas of high-risk, high-
magnitude cyanobacteria biomass occur is imperative for making
informed decisions about cyanoHAB advisories in Utah Lake and
elsewhere. If satellite-derived maps of cyanobacteria biomass
consistently overestimate cell density and bloom magnitude,
managers will not be able to depend on this resource to make
decisions. This characteristic of cyanoHAB detection is where
MDN-PC shows great promise; through a more balanced and
coherent spatiotemporal distribution of risk management
categories, managers do not have to worry about overestimating
risk and may be able to use the maps more effectively in risk
management decision making. Compared to CI-cyano, MDN-PC
best shows the full dynamic range of the blooms when spatial
resolution is not a limiting factor, as confirmed by the in situ cell
densities, butMDN-Chl well represents blooms in nearshore regions
that cannot be captured by OLCI (Figures 4–7).

While MDN-PC has great potential to be incorporated into
established cyanoHAB recreational water quality programs to
monitor bloom magnitude, there are also limitations. Although
MDN-PC is more reliable in mapping cyanoHAB risk, there is
the contrasting issue of potential underestimation. While CI-cyano
is biased towards predicting high-risk, high-magnitude predictions,
MDN-PC is feasibly biased towards low-risk, low-magnitude
predictions (Figure 9A). Because the Utah DEQ in situ sampling
strategy is a mix of both routine and opportunistic data collection, it
is difficult to obtain a true picture of the real cyanoHAB risk
management category and bloom magnitude spatiotemporal
distribution throughout the entire recreation season and the
entire lake. In situ data will be inherently biased towards the
‘worst case scenario’ sampling that Utah DEQ employs, wherein

the densest part of a cyanoHAB is typically sampled. This means for
many days and/or samples, in situ data will reflect high risk cell
concentrations when, in reality, there may be a more balancedmix of
low risk and moderate risk areas across the entire lake that are not
sampled because of resource limitations.

There is evidence to suggest that MDN-PC and MDN-Chl maps
may elucidate new patterns of bloom magnitude (Figure 7A,B) and
bring to light many more areas of low- and moderate-risk bloom
magnitude compared to CI-cyano. As seen through the Hövmoller
transect (Figure 7A), MDN-PC has more predictions of estimated
PC (i.e., any estimation of bloom magnitude) than CI-cyano. More
importantly, MDN-PC does significantly better in predicting actual
values of cyanobacteria biomass at low and moderate-magnitudes
compared to CI-cyano, which is unable to capture the same
variability and precision at those levels and, instead, classifies
them as being below detection threshold. The addition of MDN-
Chl also allows more absolute values of biomass to be mapped in
nearshore areas (Figure 7B) and fill spatiotemporal gaps otherwise
missed by OLCI imagery due to spatial limitations. It could be that
MDN-PC simply detects lower magnitude bloom biomass in a way
that CI-cyano and in situ sampling do not and, therefore, has many
more predictions in this class. While areas of low-risk biomass
detection may not present immediate concern from public health
authorities, they do represent areas of notice as low-risk can quickly
turn to moderate- or high-risk with the right environmental
conditions (e.g., elevated air temperature, wind patterns (Wynne
et al., 2010)). Understanding where low magnitude blooms occur
can help managers prepare for developing blooms and make
informed decisions. Similarly, with frequent mapping,
observations of spatiotemporal patterns of low- or moderate-risk
areas allow managers to see bloom trajectories in space and
magnitude which would allow the use of MDN-PC as a lake-
wide cyanoHAB tracking tool, opposed to only mapping areas
that have already reached high-risk. More in situ matchups,
specifically PC sample collection, are needed to explore the
potential for underestimation bias further and to understand
what may be closer to ‘true’ spatiotemporal bloom magnitude
over the recreation season.

5.2.2 Bloom frequency
Our study did not seek to answer specific questions about how

frequently cyanobacteria blooms occur over short- and long-term
temporal scales in Utah Lake but, rather, we sought to identify if
MDN-PC and MDN-Chl were potential sources to help answer
these questions in the future.

In comparison to CI-cyano, MDN-PC had an additional
cumulative 18 extra days of any bloom biomass predictions in
the Hovmöller diagrams, increasing monitoring of bloom
frequency by more than two cumulative weeks (Figure 7A,C).
Any added days of bloom magnitude predictions allows
managers to make more immediate, accurate, and precise risk-
management decisions regarding public health and resource
management. In addition to OLCI-based algorithmic
improvements with MDN-PC, adding MDN-Chl from MSI data
also augments bloom detection frequency at a different, finer spatial
scale (Figure 7B). By supplementing MDN-Chl predictions into the
MDN-PC Hovmöller transect, an additional 30 extra days of bloom
magnitude predictions occurred compared to MDN-PC alone and
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an extra 48 days compared to CI-cyano. With OLCI-based
cyanoHAB biomass indicators, aquatic and public health
managers’ ability to access near-shore satellite observations is
dependent upon algorithmic parameters around detection
within >300 m of land. While MDN-Chl may not offer the same
precision in bloom biomass that cyanobacteria-exclusive PC or CI-
cyano do, it still increases the frequency of cyanoHAB detection in
important recreational areas such as beaches and marinas and could
be used as a supplemental monitoring tool for open-water areas if
managers need to understand bloom frequency for timely risk
management decisions (Figures 4–6, 9). For example, for some
sites, the use of MDN-Chl improves the frequency of satellite-
based cyanoHAB observations from no observations to at least
weekly, if not more frequently (Figures 5, 6, 9B).

5.2.3 Bloom occurrence and extent
Regarding temporal and/or spatial scale, there is no standardized

definition of a cyanoHAB and interpretations of spatiotemporal
cyanoHAB risk vary based on application. For example, a
cyanoHAB can be defined relative to its spatial extent; examples
include a specific two-dimensional size that biomass must reach for
it to be considered a cyanoHAB or a certain percentage of the
waterbody area covered by cyanobacteria biomass before
management action is taken (Hu et al., 2010; Davis et al., 2019).
Similarly, the temporal occurrence pattern of a cyanobacteria
biomass can determine how a cyanoHAB is characterized;
metrics of cyanobacteria biomass persistence, on any temporal
scale, can inform thresholds of when biomass becomes a bloom
(Coffer et al., 2020).

In addition to creating additional temporal coverage of
cyanobacteria biomass compared to CI-cyano (Figures 6, 7),
MDN-PC bloom magnitude predictions also considerably
increased spatial coverage and capture of bloom biomass
predictions over our study period. Although MDN-PC and CI-
cyano had similar counts of total predictions (N = 2,667 and 2,543,
respectively) within the Hovmöller diagrams (Figures 7A,C), those
counts include predictions below biomass detection for CI-cyano,
giving managers no insight into whether there is no cyanobacteria
biomass at all or there is a low-magnitude bloom. By removing
below detection threshold predictions, the CI-cyano biomass
prediction count drops by more than 50% and becomes 57%
lower than MDN-PC’s total predictions of biomass values. Spatial
coverage of bloom biomass predictions is critical to cyanoHAB
recreational health monitoring programs. For example, in the Utah
DEQ and Utah DOH cyanoHAB monitoring program, state and
local managers have the option to issue recreational advisories on a
site-specific basis, as opposed to only issuing advisories for an entire
waterbody. This, in practice, means that portions of the waterbody
could be closed for recreational use while other areas remain open.
For Utah Lake, spatial segmentation of recreational advisories has
occurred every year since the cyanoHAB program inception
(UDEQ, 2020). The decision to not issue a lake-wide advisory as
soon as a cyanoHAB has been detected in one portion of the lake
means managers must have a precise and accurate representation of
bloom location, regardless of magnitude, on a frequent, if not daily,
basis in order to track public health risks in real-time. If monitoring
personnel are not able to visit the lake more than once a week or
once a month (e.g., restrictions due to the COVID-19 pandemic),

frequent satellite imagery becomes imperative and spatiotemporal
gaps in daily maps could also lead to gaps in human health and
environmental resource protection. With the distinct increase in
spatial extent compared to CI-cyano data, MDN-PC and MDN-Chl
can help managers make more informed, accelerated, and precise
decisions about cyanoHABs.

Timing is also important to consider when discussing the
increase in cyanoHAB observation occurrences that MDN-PC
provides. MDN-PC added the most above biomass detection
threshold spatial extent compared to CI-cyano in the early
summer and fall (Figures 7A,C). This result is important because
aquatic resource and public health managers do not just need
reliable spatial coverage of cyanoHABs during intense bloom
events that may occur in the mid to late summer weeks. Utah
Lake can potentially be utilized for recreation and irrigation as soon
as ice melts in the spring and up until ice forms in the fall or winter,
so having a comprehensive picture of cyanoHAB spatial extent for as
many days of the year as possible is imperative for keeping the
community safe. Additionally, there is growing concern about the
transport of cyanotoxins to crops and agricultural soils through the
use of contaminated irrigation waters (Corbel et al., 2014), thus
monitoring for the presence of cyanobacteria, and co-occurring
cyanotoxins, should occur during all stages of crops’ growing cycles
(May - September (Jones et al., 2020)). Although MDN-PC predicts
majority ‘low risk’ pixels during the shoulder months, even low-risk
cyanobacteria biomass has the potential to cause health issues
(Pilotto et al., 1997) and is important to track.

As with cyanoHAB frequency, the addition of MDN-Chl maps
has the potential to take satellite-based cyanoHAB observational
occurrence from zero to extensive in some shoreline sites (Figures
4–6, 9). Even in some shoreline areas where both CI-cyano and
MDN-PC may be able to reach, MDN-Chl improves upon spatial
extent precision, which may be important for public health
managers in determining health advisory locations. For example,
Utah DEQ, Utah DOH, and the Utah County Public Health
Department separate Lincoln Beach and Lincoln Marina as
different locations for health advisories. These two sites are only
~75 m from each other, making a 300-m pixel too coarse to
distinguish between the two locations. However, with MDN-Chl,
this spatial resolution is no longer a limiting factor in site-specific
cyanoHAB occurrence precision.

5.2.4 Towards a spatiotemporally coherent
cyanoHAB monitoring tool

Both short- and long-term trends of cyanoHAB metrics are
essential to keeping public health and aquatic ecosystems safe. In the
short term, the US EPA recommends that during the recreation
season, measures and thresholds of cyanoHAB magnitude should
not be exceeded on any single day in order to be protective of
recreational activities and that when recreational advisories are
issued, prompt information should be given to anyone who may
consider water-based activities, such as swimming (USEPA, 2019).
Daily in situmonitoring of all recreational areas is an enormous task
that is likely unfeasible for most cyanoHAB programs and we
showed that the satellite-based CI-cyano index may miss large
swaths of bloom biomass predictions below detection threshold
and tends to overestimate magnitude when cyanobacteria biomass is
detected (e.g. Figures 6, 8, 9). Our methods present a new and more
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coherent way to ensure spatiotemporal metrics of cyanoHAB
blooms are identified on a frequent basis during the recreation
season compared to previous frameworks. First, MDN-PC and
MDN-Chl maps combined produced substantially more frequent
observations and cyanobacteria biomass predictions across Utah
Lake compared to both in situ and CI-cyano, which would allow for
timely and frequent communication about cyanoHAB bloom
location. Second, MDN-PC and MDN-Chl showed a marked
increase in cyanobacteria biomass spatial extent compared to the
other methods and did so with a more comprehensive
spatiotemporal distribution of bloom magnitude. It is not just
areas of visible cyanobacteria scum that pose a risk to recreators
and detecting areas of low-risk or low PC values hold value in risk
communication of cyanoHABs. The absence of identification of
these areas may lead to an underrepresentation of lake-wide or site-
specific risk. Direct ingestion of algal scum or cyanotoxins is also not
the only pathway towards inflammatory illness from cyanoHABs,
exposure to any cyanobacteria cells (Pilotto et al., 1997) or
aerosolized toxins (Plaas & Paerl, 2021) also presents a risk to
public health. CI-cyano performs well during times of high
magnitude and high-risk blooms but MDN-PC (supplemented by
MDN-Chl) shows a more holistic illustration of spatiotemporal
cyanoHAB dynamics on a daily and season-long scale, creating a
great opportunity to be used as a coherent cyanoHAB tracking and
risk communication tool over different spatial and temporal scales.

Spatiotemporal information of cyanoHABs is not only of
significance during the recreation season. From a scientific
perspective, long-term trends in cyanoHAB metrics and dynamics
can yield insight into water quality health, the eutrophic status of a
waterbody, patterns of bloom origination, and how bloom
characteristics may vary under climate change and climate hazards
such as fire and drought. In 2018, the Utah Lake Science Panel was
established by the Utah Lake Steering Committee to help develop site-
specific nutrient criteria for Utah Lake and focus on the Utah Lake
Water Quality Study (ULWQS) (UDWQ, 2017). One task of the
ULWQS is to answer questions about cyanoHABs such as: ‘What are
the linkages between changes in nutrient regime and HABs?Where do
HABs most frequently start/occur? Are there hotspots and do they
tend to occur near major nutrient sources?’ (UDWQ, 2017). With data
dating back to 2016, our predictions of MDN-PC and MDN-Chl are
well positioned to help answer these specific questions of cyanoHAB
bloom characteristics, especially oneswith explicit spatial and temporal
components. With the added advantage of increased spatial coverage
of cyanobacteria biomass across all of Utah Lake, MDN-PC maps can
show spatiotemporal patterns of all cyanobacteria biomass movement
over the course of the season, the year, and annually over several years,
giving insight into possible locations of cyanoHAB hotspots and if
specific sites along and within the lake may act as potential nutrient
point sources. Broadening the scope of long-term trends, our data
products could also be used to help inform Sections 303(d), 305(b) and
314 of the Clean Water Act which ask states to report on and list
impaired waters, report on surface and ground water quality, and
inform the federal Clean Lakes Program (USEPA, 2021).

While our multimission framework shows significant
improvement in spatiotemporal metrics related to monitoring
cyanoHAB risk from satellite imagery in Utah Lake, there are
limitations to understanding the full scope of risk. For example,
we are unsure of the accuracy or predictive capabilities of the three

algorithms evaluated, alone or in combination, in detecting
subsurface blooms (cell maxima at 2–3 m depths), which can
bloom without a surface expression or scum formation (Saker &
Griffiths, 2001), and for which we do not have in situ data for
validation. Additionally, there is increased recognition that benthic
cyanoHABs can contain elevated and persistent concentrations of
cyanotoxins (Bouma-Gregson et al., 2018; Pokrzywinski et al., 2021),
harbor pathogenic bacteria (Bomo et al., 2011; Vijayavel et al., 2013),
and alter the aquatic invertebrate community (Hudon et al., 2014;
Henesy et al., 2020). The presence of several benthic cyanoHAB
genera in Utah Lake (Li et al., 2019) warrants further consideration
on how remote detection and tracking technologies could be used to
monitor and predict these populations as they also pose a public and
environmental health risk.

The MDN-PC algorithm requires additional validation before
application to satellite imagery from alternative regions. While the
MDN-PC model was trained on data from seven distinct aquatic
datasets (and even more unique water bodies) and demonstrated on a
region outside of the training set (Utah Lake), the same efficacy of the
satellite products may not hold for new regions outside of the training
set. A brief analysis of the uncertainties associated with testing on an
individual training region left out of training (leave-one-out testing) in
Table 5 of O’Shea et al. (2021) demonstrates the potential increase in
uncertainty the hyperspectral version of the model may undergo when
applied to the out-of-training set region (though these results do not
hold for the multispectral version of the MDN-PC model
demonstrated in this work, they are expected to be similar). Due to
the potential increase in uncertainties, intensive validation of satellite
products via comparison to co-located in situ measurements, ideally
spanningmultiple years and seasons, is ideal for regional assessment of
this model. However, practical limitations, including sampling cost,
satellite revisit periods, and cloud cover inhibit substantial co-located in
situ measurements in many regions.

With the anticipated advancements in remote sensing technology,
from enhancements in spectral resolution to finer spatial sampling at
more frequent rates, powerful and novel algorithms, such as MDNs,
readily adaptable to various sensor configurations will be required. This
flexibility renders MDNs a suitable alternative for generating
multimission products. MDNs are not only skilled at tackling the
inverse problem by modeling the multimodal distribution of target
values (e.g., PC) but also enable the estimation of uncertainties
associated with their predictions (Choi et al., 2018). This capability
will be added to our products to empower cyanoHAB managers to
make intelligent decisions informed by pixel-level uncertainties.
Further, we envisage that our model can be transferred to high-
resolution (<10 m) commercial satellite data with more built-in
agility for diurnal observations of major cyanoHAB events. Such
high-frequency revisit rates are achievable through one of NASA’s
future hyperspectral instruments, i.e., Geostationary Littoral Imaging
and Monitoring Radiometer (GLIMR), planned to be placed in a
geostationary orbit by 2027. We also expect that future algorithm
improvements, including atmospheric correction methods, will reduce
uncertainties in PC or other cyanoHAB proxies. Such developments
will encompass enhanced characterizations of atmospheric conditions
(Frouin et al., 2019; Pahlevan et al., 2021b), more accurate (water/
atmospheric) radiative transfer models (Chowdhary et al., 2020), and
increased availability of more globally representative paired in situ
radiometric spectra and PC (or Chla).
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6 Conclusion

Aquatic resource and public health managers have the difficult
task of managing the growing threat of harmful algal blooms in
freshwater ecosystems. Comprehensive in situ monitoring and
testing programs can be extremely costly to state and local
governments. Having reliable and consistent satellite-based
products that demonstrate daily, absolute metrics related to
cyanoHAB magnitude and spatial extent and helps strategize in
situ sampling efforts can be the difference between a waterbody
having appropriate risk communication or not and thousands of
dollars in health care costs (Kouakou & Poder, 2019; Stroming
et al., 2020). Our OLCI-based maps of PC estimation through a
class of neural networks can augment in situ cyanoHAB
monitoring and improve upon previous OLCI-based remote-
sensing methods, specifically the CI-cyano index, of
cyanobacteria biomass estimation. Additionally, the
methodology used here improves upon spatial resolution and
site-specific precision of cyanobacteria biomass by
supplementing open water MDN-PC maps with MDN-Chl
shoreline estimation. Specific improvements of MDN-PC and
MDN-Chla over in situ and CI-cyano include increased
frequency of detection and the spatial extent and enhanced
coherence of spatiotemporal cyanoHAB risk assessment
regarding cyanobacteria biomass in Utah Lake. For example,
over a given transect in Utah Lake, MDN-PC combined with
MDN-Chl provided a nearly 60% improvement in the number of
observations with an absolute value of biomass, i.e. the extent of
biomass detection, compared to CI-cyano during the recreation
season. Additionally, multimission compositing improved the
number of days with any observation of biomass by 26%
compared to CI-cyano, notably enhancing cyanoHAB
occurrence characterization. MDN-PC also offered enhanced
reliability for in situ matchups, accurately predicting field
measurements 100% of the time for low-risk biomass, lowering
the percentage of false positive predictions for high-risk biomass,
and boosting overall accuracy. Further in situ measurements
should be used to confirm the applicability of these algorithms
to other regions, and in situ measurements should be used in
combination with the satellite products to guide management
decisions. With these improvements, MDN-PC, supplemented
by MDN-Chl, shows great promise for use as a coherent
spatiotemporal cyanoHAB product within future monitoring
platforms to be used by public health and aquatic resource
managers during the recreation season and beyond.
Advancements in algorithms and multimission data processing
methods and increasing demands for improved global cyanoHAB
tracking methods will render open-access satellite products
essential for water-quality management practices.
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