491 research outputs found

    Expression of Human α2-Adrenergic Receptors in Adipose Tissue of β3-Adrenergic Receptor-deficient Mice Promotes Diet-induced Obesity

    Get PDF
    Catecholamines play an important role in controlling white adipose tissue function and development. β- and α2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte α2/β-AR balance in obesity, and it has been proposed that increased α2-ARs in adipose tissue with or without decreased β-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte α2/β-AR balance was genetically manipulated in mice. Human α2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (−/−) or heterozygous (+/−) for a disrupted β3-AR allele. Mice expressing α2-ARs in fat, in the absence of β3-ARs (β3-AR −/− background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of α2-ARs, the absence of β3-ARs, and a high fat diet. Of note, obese α2-transgenic, β3 −/− mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased α2/β-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (α2 and β3-AR) and diet interact to influence fat mass

    Suitability of aircraft wastewater for pathogen detection and public health surveillance

    Get PDF
    International air travel is now widely recognised as one of the primary mechanisms responsible for the transnational movement and global spread of SARS-CoV-2. Monitoring the viral load and novel lineages within human-derived wastewater collected from aircraft and at air transport hubs has been proposed as an effective way to monitor the importation frequency of viral pathogens. The success of this approach, however, is highly dependent on the bathroom and defecation habits of air passengers during their journey. In this study of UK adults (n = 2103), we quantified the likelihood of defecation prior to departure, on the aircraft and upon arrival on both short- and long-haul flights. The results were then used to assess the likelihood of capturing the signal from infected individuals at UK travel hubs. To obtain a representative cross-section of the population, the survey was stratified by geographical region, gender, age, parenting status, and social class. We found that an individual's likelihood to defecate on short-haul flights ( 6 h in duration). This behaviour pattern was higher among males and younger age groups. The maximum likelihood of defecation was prior to departure (< 39 %). Based on known SARS-CoV-2 faecal shedding rates (30–60 %) and an equal probability of infected individuals being on short- (71 % of inbound flights) and long-haul flights (29 %), we estimate that aircraft wastewater is likely to capture ca. 8–14 % of SARS-CoV-2 cases entering the UK. Monte Carlo simulations predicted that SARS-CoV-2 would be present in wastewater on 14 % of short-haul flights and 62 % of long-haul flights under current pandemic conditions. We conclude that aircraft wastewater alone is insufficient to effectively monitor all the transboundary entries of faecal-borne pathogens but can form part of a wider strategy for public heath surveillance at national borders

    Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice

    Get PDF
    Uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily. Based upon its high homology with UCP1 and its restricted tissue distribution to skeletal muscle and brown adipose tissue, UCP3 has been suggested to play important roles in regulating energy expenditure, body weight, and thermoregulation. Other postulated roles for UCP3 include regulation of fatty acid metabolism, adaptive responses to acute exercise and starvation, and prevention of reactive oxygen species (ROS) formation. To address these questions, we have generated mice lacking UCP3 (UCP3 knockout (KO) mice). Here, we provide evidence that skeletal muscle mitochondria lacking UCP3 are more coupled (i.e. increased state 3/state 4 ratio), indicating that UCP3 has uncoupling activity. In addition, production of ROS is increased in mitochondria lacking UCP3. This study demonstrates that UCP3 has uncoupling activity and that its absence may lead to increased production of ROS. Despite these effects on mitochondrial function, UCP3 does not seem to be required for body weight regulation, exercise tolerance, fatty acid oxidation, or cold-induced thermogenesis. The absence of such phenotypes in UCP3 KO mice could not be attributed to up-regulation of other UCP mRNAs. However, alternative compensatory mechanisms cannot be excluded. The consequence of increased mitochondrial coupling in UCP3 KO mice on metabolism and the possible role of yet unidentified compensatory mechanisms, remains to be determined

    Energy Metabolism in Uncoupling Protein 3 Gene Knockout Mice

    Get PDF
    Uncoupling protein 3 (UCP3) is a member of the mitochondrial anion carrier superfamily. Based upon its high homology with UCP1 and its restricted tissue distribution to skeletal muscle and brown adipose tissue, UCP3 has been suggested to play important roles in regulating energy expenditure, body weight, and thermoregulation. Other postulated roles for UCP3 include regulation of fatty acid metabolism, adaptive responses to acute exercise and starvation, and prevention of reactive oxygen species (ROS) formation. To address these questions, we have generated mice lacking UCP3 (UCP3 knockout (KO) mice). Here, we provide evidence that skeletal muscle mitochondria lacking UCP3 are more coupled (i.e. increased state 3/state 4 ratio), indicating that UCP3 has uncoupling activity. In addition, production of ROS is increased in mitochondria lacking UCP3. This study demonstrates that UCP3 has uncoupling activity and that its absence may lead to increased production of ROS. Despite these effects on mitochondrial function, UCP3 does not seem to be required for body weight regulation, exercise tolerance, fatty acid oxidation, or cold-induced thermogenesis. The absence of such phenotypes in UCP3 KO mice could not be attributed to up-regulation of other UCP mRNAs. However, alternative compensatory mechanisms cannot be excluded. The consequence of increased mitochondrial coupling in UCP3 KO mice on metabolism and the possible role of yet unidentified compensatory mechanisms, remains to be determined

    Formin is associated with left-right asymmetry in the pond snail and the frog

    Get PDF
    While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signalling of Nodal, downstream of symmetry-breaking, may be an ancestral feature of the Bilateria. Here we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry-breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or over-expression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models, we discovered asymmetric gene expression in 2 and 4 cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro, together these results are consistent with the view that animals with diverse bodyplans may derive their asymmetries from the same intracellular chiral elements

    Formin is associated with left-right asymmetry in the pond snail and the frog

    Get PDF
    While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signalling of Nodal, downstream of symmetry-breaking, may be an ancestral feature of the Bilateria. Here we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry-breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or over-expression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models, we discovered asymmetric gene expression in 2 and 4 cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro, together these results are consistent with the view that animals with diverse bodyplans may derive their asymmetries from the same intracellular chiral elements

    Lifespan-Extending Caloric Restriction or mTOR Inhibition Impair Adaptive Immunity of Old Mice By Distinct Mechanisms

    Get PDF
    Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan

    Protemic identification of Germline Proteins in Caenorhabditis elegans

    Get PDF
    Sexual reproduction involves fusion of 2 haploid gametes to form diploid offspring with genetic contributions from both parents. Gamete formation represents a unique developmental program involving the action of numerous germline-specific proteins. In an attempt to identify novel proteins involved in reproduction and embryonic development, we have carried out a proteomic characterization of the process in Caenorhabditis elegans. To identify candidate proteins, we used 2D gel electrophoresis (2DGE) to compare protein abundance in nucleus-enriched extracts from wild-type C. elegans, and in extracts from mutant worms with greatly reduced gonads (glp-4(bn2) worms reared at 25°C); 84 proteins whose abundance correlated with germline presence were identified. To validate candidates, we used feeding RNAi to deplete candidate proteins, and looked for reduction in fertility and/or germline cytological defects. Of 20 candidates so screened for involvement in fertility, depletion of 13 (65%) caused a significant reduction in fertility, and 6 (30%) resulted in sterility (\u3c5 % of wild-type fertility). Five of the 13 proteins with demonstrated roles in fertility have not previously been implicated in germline function. The high frequency of defects observed after RNAi depletion of candidate proteins suggests that this approach is effective at identifying germline proteins, thus contributing to our understanding of this complex organ
    • …
    corecore