51 research outputs found

    Learning to teach in a coteaching community of practice

    Get PDF
    Thesis advisor: Curt Dudley-MarlingAs a result of the standards and accountability reforms of the past two decades, heightened attention has been focused upon student learning in the K-12 classrooms, classroom teacher practice, and teacher preparation. This has led to the acknowledgement of limitations of traditional field practicum and that these learning experiences are not well understood (Bullough et al., 2003; Clift & Brady, 2005). Alternative models for student teaching, including those that foster social learning experiences, have been developed. However, research is necessary to understand the implications of these models for preservice teacher learning. Drawing on sociocultural theoretical frameworks and ethnographic perspectives (Gee and Green, 1998), this qualitative research study examined the learning experiences of a cohort of eight undergraduate preservice secondary science teachers who cotaught with eight cooperating teachers for their full practicum semester. In this model, interns planned and taught alongside multiple cooperating teachers and other interns. This study centers on the social and cultural learning that occurred within this networked model and the ways that the interns developed as high school science teachers within a coteaching community of practice (Wenger, 1998). This study utilized the following data sources: Intern and cooperating teachers interviews, field observations, meeting recordings, and program documentation. Analysis focused on community and interpersonal planes of development (Rogoff, 1995) in order understand of the nature of the learning experiences and the learning that was afforded through participant interactions. Several conclusions were made after the data were analyzed. On a daily basis, the interns participated in a wide range of cultural practices and in the activities of the community. The coteaching model challenged the idiosyncratic nature of traditional student teaching models by creating opportunities to learn across various classroom contexts. In different classrooms, there were markedly different constructions of teacher practice and participant roles. The implementation of the coteaching model also resulted in the creation of an interconnected network of colleagues. In the resulting learning community, coteachers supported one another's developing practice and critically examined their shared practice.Thesis (PhD) — Boston College, 2009.Submitted to: Boston College. Lynch School of Education.Discipline: Teacher Education, Special Education, Curriculum and Instruction

    Multi-ancestry genome-wide association study accounting for gene-psychosocial factor interactions identifies novel loci for blood pressure traits

    Get PDF
    Psychological and social factors are known to influence blood pressure (BP) and risk of hypertension and associated cardiovascular diseases. To identify novel BP loci, we carried out genome-wide association meta-analyses of systolic, diastolic, pulse, and mean arterial BP, taking into account the interaction effects of genetic variants with three psychosocial factors: depressive symptoms, anxiety symptoms, and social support. Analyses were performed using a two-stage design in a sample of up to 128,894 adults from five ancestry groups. In the combined meta-analyses of stages 1 and 2, we identified 59 loci (p value < 5e−8), including nine novel BP loci. The novel associations were observed mostly with pulse pressure, with fewer observed with mean arterial pressure. Five novel loci were identified in African ancestry, and all but one showed patterns of interaction with at least one psychosocial factor. Functional annotation of the novel loci supports a major role for genes implicated in the immune response (PLCL2), synaptic function and neurotransmission (LIN7A and PFIA2), as well as genes previously implicated in neuropsychiatric or stress-related disorders (FSTL5 and CHODL). These findings underscore the importance of considering psychological and social factors in gene discovery for BP, especially in non-European populations

    CXCR4 involvement in neurodegenerative diseases

    Get PDF

    Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia

    Get PDF

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    CXCR4 involvement in neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases
    corecore