486 research outputs found

    Modulation of genetic associations with serum urate levels by body-mass-index in humans

    Get PDF
    Documento escrito por un elevado número de autores/as, sólo se referencia el/la que aparece en primer lugar y los/as autores/as pertenecientes a la UC3M.We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment

    Association between Medical Student Grit and United States Medical Licensing Examination Performance

    Get PDF
    Presented as Themed Oral Presentation at the 2020 IUSM Education Da

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain \u3e99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19

    Get PDF
    The OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1, which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity. Multi-ancestry fine-mapping of the OAS1/2/3 region shows that a splice site variant in OAS1 is likely responsible for the association of this locus with the risk of severe COVID-19.Peer reviewe

    Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation

    Get PDF
    Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/

    Local exome sequences facilitate imputation of less common variants and increase power of genome wide association studies

    Get PDF
    The analysis of less common variants in genome-wide association studies promises to elucidate complex trait genetics but is hampered by low power to reliably detect association. We show that addition of population-specific exome sequence data to global reference data allows more accurate imputation, particularly of less common SNPs (minor allele frequency 1–10%) in two very different European populations. The imputation improvement corresponds to an increase in effective sample size of 28–38%, for SNPs with a minor allele frequency in the range 1–3%

    The choline transporter Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial function

    Get PDF
    Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis

    A Competency-based Laparoscopic Cholecystectomy Curriculum Significantly Improves General Surgery Residents’ Operative Performance and Decreases Skill Variability: Cohort Study

    Get PDF
    Objective: To demonstrate the feasibility of implementing a CBE curriculum within a general surgery residency program and to evaluate its effectiveness in improving resident skill. Summary of Background Data: Operative skill variability affects residents and practicing surgeons and directly impacts patient outcomes. CBE can decrease this variability by ensuring uniform skill acquisition. We implemented a CBE LC curriculum to improve resident performance and decrease skill variability. Methods: PGY-2 residents completed the curriculum during monthly rotations starting in July 2017. Once simulator proficiency was reached, residents performed elective LCs with a select group of faculty at 3 hospitals. Performance at curriculum completion was assessed using LC simulation metrics and intraoperative operative performance rating system scores and compared to both baseline and historical controls, comprised of rising PGY-3s, using a 2-sample Wilcoxon rank-sum test. PGY-2 group’s performance variability was compared with PGY-3s using Levene robust test of equality of variances; P < 0.05 was considered significant. Results: Twenty-one residents each performed 17.52 ± 4.15 consecutive LCs during the monthly rotation. Resident simulated and operative performance increased significantly with dedicated training and reached that of more experienced rising PGY-3s (n = 7) but with significantly decreased variability in performance (P = 0.04). Conclusions: Completion of a CBE rotation led to significant improvements in PGY-2 residents’ LC performance that reached that of PGY-3s and decreased performance variability. These results support wider implementation of CBE in resident training

    A Generalizable Multimodal Scrub Training Curriculum in Surgical Sterile Technique

    Get PDF
    Introduction: Recent endeavors from governing bodies such as the AAMC have formally recognized the importance of aseptic technique. AAMC guidelines include activities that all graduating physicians should be able to perform with minimum indirect supervision and were developed to recognize these needs. For example, the skills necessary for aseptic technique include daily safety habits and general physician procedures. Methods: We developed a scrub training curriculum and evaluated the program through a quasi-experimental study with a pre- and posttest design. Questions were developed to examine students' perceived knowledge and skills as related to the objectives of the course and to their anxieties, concerns, and future training needs. Results: Between February 2020 and March 2020, 44 students completed the curriculum. Students indicated that self-efficacy significantly increased in all aspects of the curricular goals following curriculum completion. Students identified understanding OR etiquette as the most anxiety-provoking element associated with scrub training. They felt that more time could be spent elucidating this etiquette. On the other hand, tasks such as surgical hand hygiene were the least anxiety-inducing. Discussion: We share this multimodal scrub training curriculum, mapped to the AAMC's guidelines, to reduce variability in teaching strategies and skills acquisition through a standardized curriculum. Also, we effectively imparted these skills and instilled a sense of confidence in learners as they worked to provide their best in patient care and safety

    General Framework for Meta-Analysis of Haplotype Association Tests

    Get PDF
    For complex traits, most associated single nucleotide variants (SNV) discovered to date have a small effect, and detection of association is only possible with large sample sizes. Because of patient confidentiality concerns, it is often not possible to pool genetic data from multiple cohorts, and meta-analysis has emerged as the method of choice to combine results from multiple studies. Many meta-analysis methods are available for single SNV analyses. As new approaches allow the capture of low frequency and rare genetic variation, it is of interest to jointly consider multiple variants to improve power. However, for the analysis of haplotypes formed by multiple SNVs, meta-analysis remains a challenge, because different haplotypes may be observed across studies. We propose a two-stage meta-analysis approach to combine haplotype analysis results. In the first stage, each cohort estimate haplotype effect sizes in a regression framework, accounting for relatedness among observations if appropriate. For the second stage, we use a multivariate generalized least square meta-analysis approach to combine haplotype effect estimates from multiple cohorts. Haplotype-specific association tests and a global test of independence between haplotypes and traits are obtained within our framework. We demonstrate through simulation studies that we control the type-I error rate, and our approach is more powerful than inverse variance weighted meta-analysis of single SNV analysis when haplotype effects are present. We replicate a published haplotype association between fasting glucose-associated locus (G6PC2) and fasting glucose in seven studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and we provide more precise haplotype effect estimates.Generation Scotland: Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorate CZD/16/6 and the Scottish Funding Council HR03006. Genotyping of the GS:SFHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the UKâs Medical Research Council. Ethics approval for the study was given by the NHS Tayside committee on research ethics (reference 05/S1401/89). We are grateful to all the families who took part, the general practitioners and the Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, healthcare assistants and nurses. FamHS: Family Heart Study was supported by NIH grants RO1-HL-087700 and RO1-HL-088215 (M.A.P., PI) from NHLBI, and RO1-DK-8925601 and RO1-DK-075681 (I.B.B., PI) from NIDDK. MESA: MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, and UL1-TR-000040. Funding for SHARe genotyping was provided by NHLBI contract N02-HL-64278. Funding for MESA Family was provided by grants R01-HL-071051, R01-HL-071205, R01-HL-071250, R01-HL-071251, R01-HL-071252, R01-HL-071258, R01-HL-071259, and UL1-RR-025005. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. FHS: Framingham Heart Study—Genotyping, quality control, and calling of the Illumina HumanExome BeadChip in the Framingham Heart Study was supported by funding from the National Heart, Lung and Blood Institute, Division of Intramural Research (Daniel Levy and Christopher J. OâDonnell, Principle Investigators). A portion of this research was conducted using the Linux Clusters for Genetic Analysis (LinGA) computing resources at Boston University Medical Campus. Also supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) R01 DK078616, NIDDK K24 DK080140, and American Diabetes Association Mentor-Based Postdoctoral Fellowship Award #7-09-MN-32, all to Dr. Meigs. FENLAND: The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team, and the Epidemiology Field, Data and Laboratory teams. EPIC-Potsdam: We thank all EPIC-Potsdam participants for their invaluable contribution to the study. The study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.). The recruitment phase of the EPIC-Potsdam study was supported by the Federal Ministry of Science, Germany (01 EA 9401) and the European Union (SOC 95201408 05 F02). The follow-up of the EPIC-Potsdam study was supported by German Cancer Aid (70-2488-Ha I) and the European Community (SOC 98200769 05 F02). Furthermore, we thank Dr. Manuela Bergmann who was responsible for the methodological and organizational work of data collections of exposures and outcomes and Wolfgang Fleischhauer for his medical expertise that was employed in case ascertainment and contacts with the physicians and Ellen Kohlsdorf for data management. CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL103612, HL068986 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/gepi.2195
    corecore