515 research outputs found
Propagation of light through small clouds of cold interacting atoms
We demonstrate experimentally that a cloud of cold atoms with a size
comparable to the wavelength of light can induce large group delays on a laser
pulse when the laser is tightly focused on it and is close to an atomic
resonance. Delays as large as -10 ns are observed, corresponding to
"superluminal" propagation with negative group velocities as low as -300 m/s.
Strikingly, this large delay is associated with a moderate extinction owing to
the very small size of the cloud and to the light-induced interactions between
atoms. It implies that a large phase shift is imprinted on the continuous laser
beam, and opens interesting perspectives for applications to quantum
technologies.Comment: 5 pages, 3 figures Supplemental Material : 2 pages, 2 Figure
Taxol: A complex diterpenoid natural product with an evolutionarily obscure origin
Taxol, a diterpenoid natural product first isolated from Taxus brevifolia, is one of today’s better known anticancer drugs. Despite its clinical efficacy, the difficulty of establishing a secure and cost-effectivesupply of taxol has limited its use. However, its unique mode of action and efficacy against multiple forms of cancer has ensured continual efforts to achieve total and semisynthesis, as well as biotechnological production methods. Total synthesis is now possible but inefficient, so the production of taxol and related taxoids remains completely dependent on biomass derived from Taxus sp, with cell suspensions and collected plant materials as sources. The key to improving the supply of taxol and other clinically useful taxoids is the detailed elucidation of the taxoid biosynthesis pathway, which has been the subject of intense research. Many genes and enzymes in the Taxus pathway for taxoidbiosynthesis have now been identified, although gaps remain. In addition to Taxus sp, taxoids are also synthesized by various endophytic fungi, which often live in association with Taxus trees, thus raising questions about the evolutionary origin of this complex diterpenoid pathway. In the future, it may be possible to improve taxoid synthesis through the genetic modification of Taxus cell cultures, byculturing endophytic fungi or by transferring the entire pathway into a heterologous expression host, such as Saccharomyces cerevisiae
Observation of suppression of light scattering induced by dipole-dipole interactions in a cold atomic ensemble
We study the emergence of collective scattering in the presence of
dipole-dipole interactions when we illuminate a cold cloud of rubidium atoms
with a near-resonant and weak intensity laser. The size of the atomic sample is
comparable to the wavelength of light. When we gradually increase the atom
number from 1 to 450, we observe a broadening of the line, a small red shift
and, consistently with these, a strong suppression of the scattered light with
respect to the noninteracting atom case. Numerical simulations, which include
the internal atomic level structure, agree with the data.Comment: 5 pages, 5 figure
Experimental test of nonlocal realistic theories without the rotational symmetry assumption
We analyze the class of nonlocal realistic theories that was originally
considered by Leggett [Found. Phys. 33, 1469 (2003)] and tested by us in a
recent experiment [Nature (London) 446, 871 (2007)]. We derive an
incompatibility theorem that works for finite numbers of polarizer settings and
that does not require the previously assumed rotational symmetry of the
two-particle correlation functions. The experimentally measured case involves
seven different measurement settings. Using polarization-entangled photon
pairs, we exclude this broader class of nonlocal realistic models by
experimentally violating a new Leggett-type inequality by 80 standard
deviations.Comment: Published versio
Quantum key distribution over 30km of standard fiber using energy-time entangled photon pairs: a comparison of two chromatic dispersion reduction methods
We present a full implementation of a quantum key distribution system using
energy-time entangled photon pairs and functioning with a 30km standard telecom
fiber quantum channel. Two bases of two orthogonal states are implemented and
the setup is quite robust to environmental constraints such as temperature
variation. Two different ways to manage chromatic dispersion in the quantum
channel are discussed.Comment: 10 pages, 4 figure
Secure quantum channels with correlated twin laser beams
This work is the development and analysis of the recently proposed quantum
cryptographic protocol, based on the use of the two-mode coherently correlated
states. The protocol is supplied with the cryptographic control procedures. The
quantum noise influence on the channel error properties is examined. State
detection features are proposed
Experimental delayed-choice entanglement swapping
Motivated by the question, which kind of physical interactions and processes
are needed for the production of quantum entanglement, Peres has put forward
the radical idea of delayed-choice entanglement swapping. There, entanglement
can be "produced a posteriori, after the entangled particles have been measured
and may no longer exist". In this work we report the first realization of
Peres' gedanken experiment. Using four photons, we can actively delay the
choice of measurement-implemented via a high-speed tunable bipartite state
analyzer and a quantum random number generator-on two of the photons into the
time-like future of the registration of the other two photons. This effectively
projects the two already registered photons onto one definite of two mutually
exclusive quantum states in which either the photons are entangled (quantum
correlations) or separable (classical correlations). This can also be viewed as
"quantum steering into the past"
A Compact Solid State Detector for Small Angle Particle Tracking
MIDAS (MIcrostrip Detector Array System) is a compact silicon tracking
telescope for charged particles emitted at small angles in intermediate energy
photonuclear reactions. It was realized to increase the angular acceptance of
the DAPHNE detector and used in an experimental program to check the
Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron, MAMI. MIDAS
provides a trigger for charged hadrons, p/pi identification and particle
tracking in the region 7 deg < theta < 16 deg. In this paper we present the
main characteristics of MIDAS and its measured performances.Comment: 13 pages (9 figures). Submitted to NIM
Conditioned Unitary Transformation on biphotons
A conditioned unitary transformation ( polarization rotation) is
performed at single-photon level. The transformation is realized by rotating
polarization for one of the photons of a polarization-entangled biphoton state
(signal photon) by means of a Pockel's cell triggered by the detection of the
other (idler) photon after polarization selection. As a result, polarization
degree for the signal beam changes from zero to the value given by the idler
detector quantum efficiency. This result is relevant to practical realization
of various quantum information schemes and can be used for developing a new
method of absolute quantum efficiency calibration
- …