165 research outputs found

    Global turbulence simulations of the tokamak edge region with GRILLIX

    Full text link
    Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electromagnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied. The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Comput.Phys.Commun. 184:2419, (2013); A. Stegmeir et al., Comput.Phys.Commun. 198:139, (2016)], which allows to study realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq approximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards the X-point

    Theory of Adsorption and Surfactant Effect of Sb on Ag (111)

    Full text link
    We present first-principles studies of the adsorption of Sb and Ag on clean and Sb-covered Ag (111). For Sb, the {\it substitutional} adsorption site is found to be greatly favored with respect to on-surface fcc sites and to subsurface sites, so that a segregating surface alloy layer is formed. Adsorbed silver adatoms are more strongly bound on clean Ag(111) than on Sb-covered Ag. We propose that the experimentally reported surfactant effect of Sb is due to Sb adsorbates reducing the Ag adatom mobility. This gives rise to a high density of Ag islands which coalesce into regular layers.Comment: RevTeX 3.0, 11 pages, 0 figures] 13 July 199

    Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium experiment

    Get PDF
    International audienceFor the first time, we have directly measured the transport of a vector magnetic field by isotropic turbulence in a high Reynolds number liquid metal flow. In analogy with direct measurements of the turbulent Reynolds stress (turbulent viscosity) that governs momentum transport, we have measured the turbulent electromotive force (emf) by simultaneously measuring three components of velocity and magnetic fields, and computed the correlations that lead to mean-field current generation. Furthermore, we show that this turbulent emf tends to oppose and cancel out the local current, acting to increase the effective resistivity of the medium, i.e., it acts as an enhanced magnetic diffusivity. This has important implications for turbulent transport in astrophysical objects, particularly in dynamos and accretion disks

    The (extended) achondroplasia foramen magnum score has good observer reliability

    Get PDF
    Background Achondroplasia is the most common skeletal dysplasia. A significant complication is foramen magnum stenosis. When severe, compression of the spinal cord may result in sleep apnea, sudden respiratory arrest and death. To avoid complications, surgical decompression of the craniocervical junction is offered in at-risk cases. However, practice varies among centres. To standardize magnetic resonance (MR) reporting, the achondroplasia foramen magnum score was recently developed. The reliability of the score has not been assessed. Objective To assess the interobserver reliability of the achondroplasia foramen magnum score. Materials and methods Base of skull imaging of children with achondroplasia under the care of Sheffield Children’s Hospital was retrospectively and independently reviewed by four observers using the achondroplasia foramen magnum score. Two-way random-effects intraclass coefficient (ICC) was used to assess inter- and intra-observer reliability. Results Forty-nine eligible cases and five controls were included. Of these, 10 were scored normal, 17 had a median score of 1 (mild narrowing), 11 had a median score of 2 (effacement of cerebral spinal fluid), 10 had a score of 3 (compression of cord) and 6 had a median score of 4 (cord myelopathic change). Interobserver ICC was 0.72 (95% confidence interval = 0.62–0.81). Intra-observer ICC ranged from 0.60 to 0.86. Reasons for reader disagreement included flow void artefact, subtle T2 cord signal and myelopathic T2 cord change disproportionate to canal narrowing. Conclusion The achondroplasia foramen magnum score has good interobserver reliability. Imaging features leading to interobserver disagreement have been identified. Further research is required to prospectively validate the score against clinical outcomes

    Exploring the development of a cultural care framework for European caring science

    Get PDF
    The aim of this paper is to discuss the development of a cultural care framework that seeks to inform and embrace the philosophical ideals of caring science. Following a review of the literature that identified a lack of evidence of an explicit relationship between caring science and cultural care, a number of well-established transcultural care frameworks were reviewed. Our purpose was to select one that would resonate with underpinning philosophical values of caring science and that drew on criteria generated by the European Academy of Caring Science members. A modified framework based on the work of Giger and Davidhizar was developed as it embraced many of the values such as humanism that are core to caring science practice. The proposed caring science framework integrates determinants of cultural lifeworld-led care and seeks to provide clear directions for humanizing the care of individuals. The framework is offered to open up debate and act as a platform for further academic enquiry

    An international survey on the pragmatic management of epistaxis

    Get PDF
    Epistaxis is one of the most common ear, nose and throat emergencies. The management of epistaxis has evolved significantly in recent years, including the use of nasal cautery and packs. However, a correct treatment requires the knowledge of nasal anatomy, potential risks, and complications of treatment. Epistaxis is often a simple and readily treatable condition, even though a significant bleed may have potentially severe consequences. At present, there are very few guidelines concerning this topic. The current Survey explored the pragmatic approach in managing epistaxis. A questionnaire, including 7 practical questions has been used. The current International Survey on epistaxis management reported a relevant prevalence (21.7%), mainly during childhood and senescence, an important hospitalization rate (11.8%), the common use of anterior packing and electrocoagulation, and the popular prescription of a vitamin supplement and intranasal creams

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions
    corecore