1,941 research outputs found

    Evolutionary temperature compensation of carbon fixation in marine phytoplankton

    Get PDF
    The efficiency of carbon sequestration by the biological pump could decline in the coming decades because respiration tends to increase more with temperature than photosynthesis. Despite these differences in the short-term temperature sensitivities of photosynthesis and respiration, it remains unknown whether the long-term impacts of global warming on metabolic rates of phytoplankton can be modulated by evolutionary adaptation. We found that respiration was consistently more temperature dependent than photosynthesis across 18 diverse marine phytoplankton, resulting in universal declines in the rate of carbon fixation with short-term increases in temperature. Long-term experimental evolution under high temperature reversed the short-term stimulation of metabolic rates, resulting in increased rates of carbon fixation. Our findings suggest that thermal adaptation may therefore have an ameliorating impact on the efficiency of phytoplankton as primary mediators of the biological carbon pump

    Natural variability is essential to learning new faces

    Get PDF
    We learn new faces throughout life, for example in everyday settings like watching TV. Recent research has shown that image variability is key to this ability: if we learn a new face over highly variable images, we are better able to recognize that person in novel pictures. Here we asked people to watch TV shows they had not seen before, and then tested their ability to recognize the actors. Some participants watched TV shows in the conventional manner, whereas others watched them upside down or contrast-reversed. Image variability is equivalent across these conditions, and yet we observed that viewers were unable to learn the faces upside down or contrast-reversed - even when tested in the same format as learning. We conclude that variability is a necessary, but not sufficient, condition for face learning. Instead, mechanisms underlying this process are tuned to extract useful information from variability falling within a critical range that corresponds to natural, everyday variation

    Land Grant Application- Jenkins, Samuel (Buckfield)

    Get PDF
    Land grant application submitted to the Maine Land Office on behalf of Samuel Jenkins for service in the Revolutionary War, by their widow Thankful.https://digitalmaine.com/revolutionary_war_me_land_office/1496/thumbnail.jp

    Polytetraflouroethylene Thin Coatings For Tribological Applications

    Get PDF
    Mechanical components with lower coefficients of friction decrease the amount of energy dissipated by the system due to friction. Coating these components would decrease the coefficients of friction between surfaces without sacrificing the strength of the components. A polytetrafluoroethylene (PTFE) layer adhered through a polydopamine (PDA) layer on a steel substrate will reduce the coefficient of friction on the substrate surface. This paper discusses different methods for attempting to increase the uniformity of the PDA layer as well as decrease the PDA coating time. Methods for increasing uniformity include using a particle disperser instead of a magnet stir rod, changing the orientation of the coating surface in the solution, and changing the position of the coating surface in the solution. The PDA deposition time was decreased by increasing the temperature of the PDA solution. After applying the PDA layer onto the steel substrate, a PTFE layer was applied to the steel substrate by dipcoating. The different samples were tested for coefficient of friction and durability cycles. The method for the most uniform PDA distribution as well as highest durability of PDA/PTFE coating was the steel substrate that was in PDA solution at 90°C mixed with a particle disperser spinning at 2800 rpm for 6 hours. This sample yielded an average coefficient of friction of 0.0950 and lasting and average of 512 cycles under a 15 N normal load

    Plasmodium falciparum: linkage disequilibrium between loci in chromosomes 7 and 5 and chloroquine selective pressure in Northern Nigeria.

    Get PDF
    In view of the recent discovery (Molecular Cell 6, 861-871) of a (Lys76Thr) codon change in gene pfcrt on chromosome 7 which determines in vitro chloroquine resistance in Plasmodium falciparum, we have re-examined samples taken before treatment in our study in Zaria, Northern Nigeria (Parasitology, 119, 343-348). Drug resistance was present in 5/5 cases where the pfcrt 76Thr codon change was seen (100% positive predictive value). Drug sensitivity was found in 26/28 cases where the change was absent (93% negative predictive value). Allele pfcrt 76Thr showed strong linkage disequilibrium with pfmdr1 Tyr86 on chromosome 5, more complete than that between pfcrt and cg2 alleles situated between recombination cross-over points on chromosome 7. Physical linkage of cg2 with pfcrt may account for linkage disequilibrium between their alleles but in the case of genes pfmdr1 and pfcrt, on different chromosomes, it is likely that this is maintained epistatically through the selective pressure of chloroquine

    Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system

    Get PDF
    Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive, we describe a procedure (BLENDER) to model the photometry in terms of a "blend" rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9, a target harboring two previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing transit timing variations, and an additional shallower signal with a 1.59-day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals, and provide independent validation of their planetary nature. For the shallower signal we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and current spectroscopic observations are as yet insufficient to establish its mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To appear in ApJ, 1 January 2010. Accepted versio

    KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary

    Get PDF
    Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.NASA, Science Mission DirectorateNASA NNX08AR14GEuropean Research Council under the European Community 227224W.M. Keck FoundationMcDonald Observator

    A First Comparison of Kepler Planet Candidates in Single and Multiple Systems

    Get PDF
    In this letter we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show 2 candidate planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17 percent of the total number of systems, and a third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even to prevent the formation of such systems in the first place.Comment: 13 pages, 13 figures, submitted to ApJ Letter

    Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations

    Get PDF
    We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.Comment: Accepted to MNRA
    corecore