301 research outputs found

    The effects of grain shape and frustration in a granular column near jamming

    Full text link
    We investigate the full phase diagram of a column of grains near jamming, as a function of varying levels of frustration. Frustration is modelled by the effect of two opposing fields on a grain, due respectively to grains above and below it. The resulting four dynamical regimes (ballistic, logarithmic, activated and glassy) are characterised by means of the jamming time of zero-temperature dynamics, and of the statistics of attractors reached by the latter. Shape effects are most pronounced in the cases of strong and weak frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure

    Generation of Primordial Cosmological Perturbations from Statistical Mechanical Models

    Full text link
    The initial conditions describing seed fluctuations for the formation of structure in standard cosmological models, i.e.the Harrison-Zeldovich distribution, have very characteristic ``super-homogeneous'' properties: they are statistically translation invariant, isotropic, and the variance of the mass fluctuations in a region of volume V grows slower than V. We discuss the geometrical construction of distributions of points in R3{\bf R}^3 with similar properties encountered in tiling and in statistical physics, e.g. the Gibbs distribution of a one-component system of charged particles in a uniform background (OCP). Modifications of the OCP can produce equilibrium correlations of the kind assumed in the cosmological context. We then describe how such systems can be used for the generation of initial conditions in gravitational NN-body simulations.Comment: 7 pages, 3 figures, final version with minor modifications, to appear in PR

    The Glass-like Universe: Real-space correlation properties of standard cosmological models

    Full text link
    After reviewing the basic relevant properties of stationary stochastic processes (SSP), defining basic terms and quantities, we discuss the properties of the so-called Harrison-Zeldovich like spectra. These correlations, usually characterized exclusively in k-space (i.e. in terms of power spectra P(k)), are a fundamental feature of all current standard cosmological models. Examining them in real space we note their characteristics to be a {\it negative} power law tail \xi(r) \sim - r^{-4} and a {\it sub-poissonian} normalised variance in spheres \sigma^2(R) \sim R^{-4} \ln R. We note in particular that this latter behaviour is at the limit of the most rapid decay (\sim R^{-4}) of this quantity possible for any stochastic distribution (continuous or discrete). This very particular characteristic is usually obscured in cosmology by the use of Gaussian spheres. In a simple classification of all SSP into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with P(0)=0, belong. In statistical physics language they are well described as glass-like. They do not have either ``scale-invariant'' features, in the sense of critical phenomena, nor fractal properties. We illustrate their properties with some simple examples, in particular that of a ``shuffled'' lattice.Comment: 20 pages, 3 postscript figures, corrected some typos and minor changes to match the accepted version in Physical Review

    Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation

    Get PDF
    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei

    TIC 278956474: Two Close Binaries in One Young Quadruple System Identified by TESS

    Get PDF
    We have identified a quadruple system with two close eclipsing binaries in Transiting Exoplanet Survey Satellite (TESS) data. The object is unresolved in Gaia and appears as a single source at parallax 1.08 ± 0.01 mas. Both binaries have observable primary and secondary eclipses and were monitored throughout TESS Cycle 1 (sectors 1-13), falling within the TESS Continuous Viewing Zone. In one eclipsing binary (P = 5.488 days), the smaller star is completely occluded by the larger star during the secondary eclipse; in the other (P = 5.674 days) both eclipses are grazing. Using these data, spectroscopy, speckle photometry, spectral energy distribution analysis, and evolutionary stellar tracks, we have constrained the masses and radii of the four stars in the two eclipsing binaries. The Li i equivalent width indicates an age of 10-50 Myr and, with an outer period of 858+7-5 days, our analysis indicates this is one of the most compact young 2 + 2 quadruple systems known
    • …
    corecore