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A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ −ray spectrometer at the 
TRIUMF/ISAC II facility has permitted the determination of the 〈2+

1 ‖Ê2‖2+
1 〉 diagonal matrix element 

in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the 
nuclear polarizability. The nuclear polarizability for the ground and first-excited (2+

1 ) states in 12C 
have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence 
and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear 
polarizability with a substantial increase between the ground state and first excited 2+

1 state at 4.439 
MeV. The polarizability of the 2+

1 state is introduced into the current and previous Coulomb-excitation 
reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of Q S (2

+
1 ) = +0.053(44) eb 

and Q S (2
+
1 ) = +0.08(3) eb are determined, respectively, yielding a weighted average of Q S (2

+
1 ) =

+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that 
the 2+

1 state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in 
Coulomb-excitation studies of light nuclei.

 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Electric quadrupole matrix elements are key quantities in prob-
ing the collective structure of nuclei as they are a sensitive and 
direct measure of the quadrupole deformation. The precise deter-
mination of these matrix elements reveals the nuclear collectivity 
caused by the coherent motion of nucleons, and the associated nu-
clear wavefunctions. Modern nuclear theory is providing refined 

* Corresponding author.
E-mail address: jnorce@uwc.ac.za (J.N. Orce).

1 Present address: Research Center for Nuclear Physics, Osaka University, Ibaraki, 
Osaka 567-0047, Japan.
2 Deceased.

calculations of electric quadrupole matrix elements and related 
properties in light nuclei. Of particular interest is the testing-
ground nucleus 12C, as this is computationally accessible to most 
modern theoretical approaches, including ab initio [1–9] and clus-
ter calculations [10–15]. Cluster calculations in 12C suggest that 
the admixture of α-cluster wavefunctions may have a pronounced 
effect on the shape of mean-field states at lower energies. Con-
siderable α-cluster triangle admixtures of 52% and 67% for the 
ground and 2+

1 states, respectively, are predicted by fermionic 
molecular dynamics (FMD) calculations [12], whereas a mean-field 
contribution of 15% is predicted for the 0+

2 Hoyle state [16]; the 
state crucial to fusion of three α particles in the core of massive 

https://doi.org/10.1016/j.physletb.2017.12.009

0370-2693/ 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3 .
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stars. Moreover, cluster models predict a combination of triangu-
lar oblate shapes for the ground state and first 2+

1 excitation in 
12C [10–12]. Mean-field calculations using a relativistic energy-
density functional also show a cluster-like structure for the ground 
state of 20Ne [17].

Experimentally, this strong mixing between the 0+
2 Hoyle and 

0+
1 ground states is supported by the largest known electric 

monopole transition strength, 103 ×ρ2(E0) = 500(81), determined 
from electron scattering measurements [18], which corresponds to 
about a 30% increase in the mean squared charge radius for the 
Hoyle state.

The spectroscopic quadrupole moment, Q S ( J ), provides a mea-

sure of the extent to which the nuclear charge distribution in the 
laboratory frame acquires an ellipsoidal shape [19,20], and can 
be determined for states with angular momentum J �= 0, 1

2
[21]. 

For the 2+
1 state, assuming an ideal rotor, Q S(2

+
1 ) is related to 

the intrinsic quadrupole moment, Q 0 , in the body-fixed frame 
by Q S(2

+
1 ) = − 2

7
Q 0 [21]. Most theoretical approaches predict 

a very similar Q S(2
+
1 ) ≈ +0.06 eb for 12C [1,6,7,22–24], which 

supports a substantial oblate deformation. Recent ab initio calcula-

tions [1,6,7] provide theoretical uncertainties in their results which 
makes for more meaningful comparison with experiment. Among 
those worth noting are no-core shell model (NCSM) calculations of 
Q S(2

+
1 ) values with unprecedented high precision [3,6,7].

The reorientation effect [19,20,25] (RE) in Coulomb excitation 
measurements at energies well below the Coulomb barrier – so-
called safe Coulomb excitation – provides a powerful spectro-
scopic probe for extracting 〈2+

1 ‖Ê2‖2+
1 〉 diagonal matrix elements, 

which can be directly related to the Q S (2
+
1 ) value as Q S(2

+
1 ) =

0.75793 〈2+
1 ‖Ê2‖2+

1 〉 [25].

The only RE measurement of the 2+
1 state at 4.439 MeV in 12C 

was performed at safe energies by Vermeer et al. [26] through a 
measurement of inelastically scattered 12C ions by a 208Pb target. 
The scattered 12C ions were momentum analyzed using a magnetic 
spectrometer and detected at the focal plane using a position sen-
sitive multi-wire proportional counter placed at a scattering angle 
in the laboratory frame of θ = 90◦ . A value of Q S (2

+
1 ) = +0.06(3)

eb was determined using the nominal nuclear polarizability pa-
rameter κ(g.s.) = 1 determined for the ground state of heavier 
nuclei [27]. This parameter represents the ratio of the observed 
isovector giant-dipole-resonance (GDR) effect to that predicted by 
the hydrodynamic model [27], and is a pivotal ingredient in the 
RE analysis of light nuclei, where κ > 1 values are generally ob-
served [26–34].

In this work, we perform a safe Coulomb-excitation RE study 
of the high-lying 2+

1 state in 12C using particle−γ coincidence 
measurements and state-of-the-art NCSM calculations of the nu-
clear polarizabilities κ(g.s.) and κ(2+

1 ). Although there seems to 
be a good agreement between previous theoretical and experi-
mental values of Q S (2

+
1 ), the present result emphasizes the cru-

cial importance of determining κ in Coulomb-excitation studies of 
loosely-bound light nuclei. The main advantage of the particle-γ
coincidence technique lies in the absence of target contaminants 
in the Doppler-corrected γ -ray spectrum.

For this measurement, a beam of 12C3+ ions, delivered to the 
TRIUMF/ISAC II facility [35] at 4.975 AMeV, has been used to pop-
ulate the 2+

1 state at 4.439 MeV in 12C through Coulomb exci-
tation. The beam energy was chosen in conformity with Spear’s 
prescription of a minimum separation between nuclear surfaces 
of S(ϑ)min � 6.5 fm [36] to avoid Coulomb-nuclear interferences, 
where ϑ is the scattering angle in the center-of-mass frame. An 
average intensity of ≈ 5 × 108 particles/s was delivered to the TI-
GRESS array [37] over approximately three days, and impinged on 
a 3 mg/cm2 thick 194Pt target (96.45% enriched). The online data 

Fig. 1. Typical particle-energy spectra for the rings at average θ angles of (a) 31.7◦

and (b) 60.7◦ obtained with (black) and without (light brown) an energy-sharing 
condition, see text for details.

were collected in event-by-event mode using a high-speed digi-
tal data acquisition system with 100 MHz TIG-10 digital electronics 
modules.

The γ rays de-exciting the beam and target nuclei were de-
tected using eight TIGRESS HPGe clover detectors positioned at 
14.5 cm from the target, and covering around 15% of 4π . The 
scattered ions and recoiling particles were detected in a double-
sided, CD-type silicon detector (S2 type from Micron Semiconduc-

tors [38]), which was mounted 19.4 mm downstream. The exper-
imental set up is very similar to the one given in Ref. [29] apart 
from the use of an S2 detector, which is segmented into 48 rings 
and 16 azimuthal sectors on the ohmic side, and has the 12 outer-
most rings incomplete; hence, it does not present full azimuthal or 
φ symmetry. The scattered beam was fully stopped in the 500-μm 
thick S2 detector. Additional experimental details will be presented 
in a separate manuscript.

The energy calibration and relative photo-peak efficiency ε of 
the TIGRESS detectors were determined using standard radioac-
tive 152Eu and 56Co sources. The calibration of all the silicon 
strips was done using a triple α source containing 239Pu, 241Am 
and 244Cm, together with higher-energy calibration points pro-
vided by the elastically scattered beam particles simulated with 
GEANT4 [39], both including energy losses [40] in the 194Pt target 
and the 0.58-mg/cm2 thick aluminum coating on the ohmic side 
of the S2 detector facing the scattered 12C beam. Typical particle-
energy spectra for the innermost (a) and outermost (b) rings at 
average angles of θ = 31.7◦ and 60.7◦ are shown in Fig. 1.

Particle−γ coincidence events were selected by employing the 
condition that each hit in a TIGRESS detector has a hit in both a ring 
(θ ) and a sector (φ) of the S2 detector within a coincidence time 
window of approximately 195 ns. The corresponding γ−ray spec-
tra were further cleaned by subtracting random coincidence events 
outside the 195-ns time window. An additional energy-sharing 
condition of |Ering − Esector | ≤ 350 keV between each ring and sec-
tor yields a large background reduction in the particle spectra and 
enables a better selection of the inelastic peaks [29]. This energy-
sharing condition was chosen to achieve the most optimum back-
ground reduction while conserving the area of the 4439-keV peak 
in the γ−ray spectrum. Fig. 1 illustrates the effect with a large 
background reduction (black), as compared with no energy-sharing 
condition (brown), at low and intermediate energies. Finally, in-
elastic particle gates can be set on each ring particle spectrum to 
collect solely Coulomb-excitation events in coincidence with the γ
ray of interest.
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Fig. 2. Doppler-corrected γ −ray energy spectrum generated by employing 
particle−γ , time, energy-sharing and inelastic-particle coincidence conditions.

Fig. 2 shows the Doppler-corrected γ−ray energy spectrum ob-
tained from the TIGRESS array after applying particle and time 
tagging conditions. The spectrum shows the 328- and 4439-keV 
γ−ray transitions depopulating the 2+

1 level in 194Pt and 12C, re-
spectively.

Another second-order effect in Coulomb-excitation perturbation 
theory which may influence, particularly for light nuclei [26,28,29], 
the determination of both the sign and magnitude of 〈2+

1 ‖Ê2‖2+
1 〉

is the E1 polarizability [41]. This involves virtual electric-dipole 
excitations via the GDR that polarize the shape of the 2+

1 state 
through two-step processes of the type 0+

1 → 1−
GDR → 2+

1 . In par-
ticular, light nuclei present typical values of κ > 1 [28], which has 
a net effect of shifting the measured Q S (2

+
1 ) values towards more 

prolate shapes.
The polarization potential V pol generated by the E1 polarizabil-

ity is incorporated into Coulomb-excitation analyses by a reduction 
in the quadrupole interaction, V0(t), which results in an effective 
potential, V ef f (t) [30],

V ef f (t) = V0(t)
(

1− V pol(t)
)

(1)

= V0(t)

(

1− z
a

r(t)

)

,

where a is the half-distance of closest approach in a head-on colli-
sion and r(t) the magnitude of the projectile-target position vector. 
For the case of projectile excitation, z is given by [25],

z =
10Zt α

3Z pR2a
≈ 0.0039 κ

T p Ap

Z2
p(1+ Ap/At)

, (2)

with R = 1.2A1/3 fm being the nuclear radius, T p the kinetic en-
ergy (in MeV) in the laboratory frame, α = h̄c

2π2 σ−2 the nuclear po-
larizability, where α = 2P0 as defined by Alder and Winther [25], 
and κ the polarizability parameter. The (−2) moment of the total 
photo-absorption cross section, σ−2 , and κ are related by [28],

σ−2 = 2.4κ A5/3 μb/MeV. (3)

The value of κ can accordingly be modified in modern Coulomb-

excitation codes such as GOSIA [42]. For light nuclei, values of 
κ > 1 have been determined by Coulomb-excitation measure-

ments for a few favorable cases where Q S( J ) = 0 [30,32,34], i.e., 
for J = 1/2 excited states, and shell-model calculations [22,43]. For 
the case of arbitrary spins, Häusser and collaborators developed 
an expression for κ in terms of E1 and E2 matrix elements [30], 
κ = X

X0
, where X0 = 0.0004 A

Z
eMeV−1 and X is given by,

X =

∑

n W (11 J i J f ,2 Jn)
〈i‖Ê1||n〉〈n‖Ê1‖ f 〉

En−E i

〈i‖Ê2‖ f 〉
, (4)

Fig. 3. B(E1) strengths calculated with the NCSM using the chiral NN + 3NF350

interaction for 0+
1 → 1− and 1− → 2+

1 transitions.

where the sum extends over all intermediate states |n〉 connect-

ing the initial |i〉 and final | f 〉 states with E1 transitions and 
W (11 J i J f , 2 Jn) is the Racah W-coefficient [44] with J i = 0, J f =

2 and Jn = 1 for the case at hand. It is important to note here 
that the product of two Ê1 operators yields an Ê2 operator; hence, 
some of the isoscalar giant quadrupole resonance strength may ap-
pear in the sum given in Eq. (4).

In the present work, NCSM calculations have been performed to 
estimate κ for the ground and 2+

1 states in 12C. Previous SM calcu-
lations of κ(2+

1 ) = 0.77 presumed that all the E1 strength from the 
ground state was concentrated at the GDR energy [22]. Our NCSM 
calculations used the chiral NN + 3NF350 interaction [45–47], in-
cluding the N3LO NN interaction [45] and the local N2LO 3N inter-

action [46] with the cutoff of 350 MeV [47], and considered model 
spaces with basis sizes of Nmax = 4 for the natural and Nmax = 5

for the unnatural parity states. From Eq. (4), which included the E1
matrix elements from all the transitions connecting 28 1− states 
up to 30 MeV, values of κ(g.s.) = 1.6(2) and κ(2+

1 ) = 2.2(2) are 
predicted. As shown in Fig. 3, the E1 strength is concentrated at 
an energy of about 24 MeV – the centroid energy of the GDR [48]. 
The lowest calculated 1− state energy was set to the lowest found 
1−
1 state at 10.84 MeV. In order to study convergence and deter-

mine uncertainties, predictions with the NN + 3NF350 interaction 
have been validated by additional NCSM calculations using the NN

N4LO500 interaction [49,50] SRG evolved [51] to 2.4 fm−1 at the 
same Nmax = 4/5 space and at a smaller Nmax = 2/3 space at var-
ied harmonic-oscillator frequencies, as well as at a larger Nmax = 6

space for natural parity and Nmax = 7 for unnatural parity states, 
which included 22 1− states up to 30 MeV. The latest calculations 
yield similar results of κ(g.s.) = 1.5(2) and κ(2+

1 ) = 2.1(2). In gen-
eral, to improve on the present NCSM description, one should in-
clude RGM-like cluster states with explicit α particles, e.g., 8Be+α
and couple them with the currently used NCSM basis. Such ap-
proach called NCSM with continuum is now under development. 
However, the good stability of all the 1− states with Nmax demon-

strates that our expansion is adequate.
The well-known total photo-absorption cross section measured 

for the ground state of 12C can be used to benchmark our NCSM 
calculations. A value of σ−2 = 244 μb/MeV in the 1985 evalua-
tion by Fuller [52], yields κ(g.s) = 1.6 using Eq. (3), in excellent 
agreement with our NCSM polarizability calculations for the ground 
state. The consistency of our calculations further supports the 
value of κ(2+

1 ) = 2.2(2) implemented in our GOSIA analysis [42]

throughout this work.

The integrated γ−ray yields for the 2+
1 → 0+

1 transitions in 12C 
and 194Pt have been calculated using the semi-classical coupled-
channel Coulomb-excitation least-squares code GOSIA [42]. The 
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Fig. 4. Heavy-ion angular distributions showing experimental and calculated γ −ray 
yield as a function of laboratory scattering angle, θ , for the de-excitation of the 2+

1

states in 12C (bottom) and 194Pt (top), see text for details.

semi-classical approximation is confirmed from Rutherford scat-
tering cross sections and the calculated Sommerfeld parameter, 
η = a

λ̄
= 31 ≫ 1, where λ̄ is the de Broglie wavelength. Calculations 

consider the known spectroscopic information such as level life-
times, branching ratios and matrix elements, kinematics, detector 
geometry and beam energy losses. The effect of higher-lying states 
in 12C has been estimated using GOSIA and considered negligible 
(< 0.1%). Fig. 4 shows the experimental and theoretical heavy-ion 
angular distributions from the eight clover yields for the 2+

1 → 0+
1

transitions in 194Pt (a) and 12C (b). Predictions of the cross sec-
tions for populating states in 12C were calculated at fixed values 
of 〈2+

1 ‖Ê2‖0+
1 〉 = 0.0630 eb [53], 〈2+

1 ‖Ê2‖2+
1 〉 = +0.070 eb and 

κ = 2.2, the intersection point of the centroid of the two bands in 
Fig. 5, and normalized to the experimental yields with a common 
normalization factor. The shape of the angular distributions pre-
dicted by GOSIA for both 194Pt and 12C are in good agreement with 
experiment.

The normalization procedure used in Ref. [29] was applied 
to determine 〈2+

1 ‖Ê2‖2+
1 〉, where Coulomb-excitation curves are 

determined in the 〈2+
1 ‖Ê2‖2+

1 〉 − 〈2+
1 || Ê2‖0+

1 〉 plane by fixing 
〈2+

1 ‖Ê2‖2+
1 〉 in steps of 0.01 eb, and varying 〈2+

1 ‖Ê2‖0+
1 〉 until 

converging with the experimental intensity ratio between target 
and projectile, I Tγ /I Pγ , given by,

σ T
E2W (ϑ)T

σ P
E2W (ϑ)P

= 1.037
NT

γ

N P
γ

εP
γ

εT
γ

=
I Tγ

I Pγ
, (5)

where W (ϑ) represents the integrated angular distribution of the 
de-excited γ rays in coincidence with the inelastic scattered parti-
cles [54] and the factor 1.037 accounts for the 96.45% enrichment 
of the 194Pt target chosen for normalization. The normalization of 
the γ -ray yield in 12C to the well-known matrix elements in the 
target nucleus, 194Pt, minimizes systematic effects such as dead 
time and pile-up rejection. Absolute efficiencies of εP

γ = 0.0162(5)

and εT
γ = 0.0784(8), and total counts of N P

γ = 1150(40) and NT
γ =

7021190(2650) for the 4439- and 328-keV γ−ray transitions, re-
spectively, yield I Tγ /I Pγ = 1308(62). The quoted error on this mea-

surement arises from the uncertainties of N P
γ (3.5%) and εP

γ (3.1%). 
Other contributions are less significant and include the φ asymme-

try of the TIGRESS detectors (< 0.5%) [55].

The resulting Coulomb-excitation diagonal band is shown in 
Fig. 5, where the black dashed line is the central value and the 

Fig. 5. Variation of 〈2+
1 ‖Ê2‖0+

1 〉 as a function of 〈2+
1 ‖Ê2‖2+

1 〉 in 12C for 
k(2+

1 ) = 2.2. The horizontal band represents the 1-σ boundary for 〈2+
1 ‖Ê2‖0+

1 〉 =
0.0630(16) [53]. For comparison, the square data point shows the result from 
high-precision NCSM calculations, Q S (2

+
1 ) = +0.060(4) eb and B(E2; 2+

1 → 0+
1 ) =

8.8(7) e2fm4 [6].

two black solid lines correspond to the 1σ loci limits. The hori-
zontal band represents 〈2+

1 ‖Ê2‖0+
1 〉 = 0.0630(16) eb [53]. Assum-

ing κ(2+
1 ) = 2.2, a positive value of 〈2+

1 ‖Ê2‖2+
1 〉 = +0.070(71)

eb is obtained from the intersection of the two bands, corre-
sponding to Q S (2

+
1 ) = +0.053(53) eb. The error of 〈2+

1 ‖Ê2‖2+
1 〉

was determined from the overlap region between the two bands 
assuming central values for the 〈2+

1 ‖Ê2‖0+
1 〉 band, ±0.045 eb, 

and the Coulomb-excitation diagonal curve, ±0.055 eb, added in 
quadrature. The uncertainty of κ(2+

1 ), ±0.01 eb, yield final values 
of 〈2+

1 ‖Ê2‖2+
1 〉 = +0.070(72) eb and Q S(2

+
1 ) = +0.053(54) eb. 

Moreover, if one uses κ(2+
1 ) = 1 assuming Levinger’s formula [27], 

σ−2 = 3.5κ A5/3 μb/MeV (which corresponds to κ(2+
1 ) = 1.46 us-

ing Eq. (3)), our data yields Q S(2
+
1 ) = +0.003(54) eb, as shown by 

the dotted brown line in Fig. 5; a value consistent with a spherical 
shape.

A more precise determination of the statistical uncertainty of 
〈2+

1 ‖Ê2‖2+
1 〉 has been done by employing the error minimization 

procedure in GOSIA [56], considering 〈2+
1 ‖Ê2‖0+

1 〉 = 0.0630(16)

eb [53] and 〈2+
1 ‖Ê2‖2+

1 〉 = 0.070(72) eb as initial inputs along 
with available matrix elements of higher-lying states. Using the 
six experimental yields given in Fig. 4, the error minimization car-
ried out in a two-step process, by calculating the uncorrelated 
and correlated errors, yields a final error of �〈2+

1 ‖Ê2 || 2+
1 〉 =

0.058 eb, which includes the error of κ(2+
1 ), ±0.01 eb. A final 

value of Q S(2
+
1 ) = +0.053(44) eb is determined, which accounts 

for an additional 5% systematic uncertainty in the GOSIA calcula-
tion. The main source of systematic uncertainty is attributed to 
quantal effects, which are inversely proportional to η [25,57–59], 
and could affect the validity of the semi-classical approximation. 
For η ≈ 31, quantal effects may add an uncertainty of ≤ 3.5% 
to the present determination of the Q S (2

+
1 ) value. If one takes 

the data from Vermeer et al. [26] and assumes κ(2+
1 ) = 2.2 and 

〈2+
1 ‖Ê2‖0+

1 〉 = 0.0630(16) eb, a potentially more pronounced value 
of Q S(2

+
1 ) ≈ +0.08(3) eb is determined, in agreement with the 

present work. The weighted average of the current and previous 
work yields a final value of Q S (2

+
1 ) = +0.071(25) eb.

The weighted Q S (2
+
1 ) value can be compared with state-of-

the-art ab initio calculations. The high-precision NCSM calculation 
using the CDB2k NN potential is given in Fig. 5 by the square data 
point [6], Q S (2

+
1 ) = +0.060(4) eb and B(E2; 2+

1 → 0+
1 ) = 8.8(7)

e2fm4 . Similar values of Q S(2
+
1 ) = +0.0591(25) eb and Q S (2

+
1 ) =

+0.059(1) eb are calculated, respectively, using chiral NN+3N inter-
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actions [7] and the no-core symplectic model [3]. Calculations are 
in agreement with the weighted average presented in this work.

Unfortunately, the model space that can currently be reached 
with the NCSM does not allow a calculation of the nuclear polariz-
ability for the 2+

2 state built on the Hoyle state. One could, how-

ever, speculate that if κ further increases with excitation energy, 
as the nucleus becomes more loosely bound, a more pronounced 
prolate shape might be expected for the shape of the Hoyle state 
rotational band. This is in concordance with the prolate bent-arm 
configuration – with Q S (2

+
2 ) = −0.07(2) eb – predicted by ab ini-

tio calculations using chiral perturbation theory on a lattice [2], 
and, although with an extremely large prolate deformation, the 
Q S (2

+
2 ) = −0.21(1) eb value predicted by the no-core symplec-

tic model [3]. Such an enhanced polarizability might explain the 
sudden change in the shape of the Hoyle state, which seems to 
be in disagreement with early models of cluster formation such 
as that of Morinaga, where α-cluster structures gradually emerge 
with increasing excitation energy and are fully realized at the α
threshold [60,61].

In conclusion, the Coulomb-excitation analysis performed in 
this work using the TIGRESS array and the new value of κ(2+

1 ) cal-

culated with the NCSM have permitted the determination of the 
〈2+

1 ‖Ê2‖2+
1 〉 diagonal matrix element in 12C from particle−γ co-

incidence data. The present work confirms an oblate deformation 
for the 2+

1 state in 12C, in agreement with recent ab initio and 
cluster-model calculations.

Finally, it is important to emphasize that NCSM calculations 
show that the polarizability parameter for excited states can be 
very different from the ground state value determined from to-
tal photo-absorption cross-section data. This unanticipated change 
of the nuclear polarizability from the ground state to the first ex-
citation in 12C may not only affect Coulomb-excitation analyses of 
light nuclei, but in general, as nuclei become less bound, Coulomb-

excitation studies of states at high excitation energies (e.g., su-
perdeformed bands found in nuclei with spherical ground states). 
This possibility clearly needs further investigations.
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in Eq. (4) and the late D.H. Wilkinson for fruitful discussions. Com-

puting support came from an INCITE Award on the Titan super-
computer of the Oak Ridge Leadership Computing Facility (OLCF) 
at ORNL, and from Calcul Quebec and Compute Canada.

References

[1] E. Epelbaum, et al., Phys. Rev. Lett. 106 (2011) 192501.
[2] E. Epelbaum, et al., Phys. Rev. Lett. 109 (2012) 252501.
[3] A.C. Dreyfuss, et al., Phys. Lett. B 727 (2013) 511.

[4] K. Kravvaris, A. Volya, Phys. Rev. Lett. 119 (2017) 062501.
[5] P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84 (2000) 5728;

P. Navrátil, Phys. Rev. C 62 (2000) 054311.
[6] C. Forssén, R. Roth, P. Navrátil, J. Phys. G 40 (2013) 055105.
[7] A. Calci, R. Roth, Phys. Rev. C 94 (2016) 014322.
[8] S.C. Pieper, Nucl. Phys. A 751 (2005) 516c.
[9] P. Navrátil, W.E. Ormand, Phys. Rev. C 68 (2003) 034305.

[10] D.J. Marín-Lámbarri, et al., Phys. Rev. Lett. 113 (2014) 012502.
[11] T. Neff, H. Feldmeier, J. Phys. Conf. Ser. 569 (2014) 012062.
[12] M. Chernykh, et al., Phys. Rev. Lett. 98 (2007) 032501.
[13] M. Freer, H.O.U. Fynbo, Prog. Part. Nucl. Phys. 78 (2014) 1.
[14] Y. Funaki, Phys. Rev. C 92 (2015) 021302(R).
[15] Y. Yoshida, Y. Kanada-En’yo, Prog. Theor. Exp. Phys. (2016) 123D04.
[16] F. Hoyle, Astrophys. J. Suppl. Ser. 1 (1954) 121.
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