134 research outputs found

    Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species.

    Get PDF
    Huntington\u27s disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria

    Quantification of meteorological drought risks between 1.5 °C and 4 °C of global warming in six countries

    Get PDF
    We quantify the projected impacts of alternative levels of global warming upon the probability and length of severe drought in six countries (China, Brazil, Egypt, Ethiopia, Ghana and India). This includes an examination of different land cover classes, and a calculation of the proportion of population in 2100 (SSP2) at exposed to severe drought lasting longer than one year. Current pledges for climate change mitigation, which are projected to still result in global warming levels of 3 °C or more, would impact all of the countries in this study. For example, with 3 °C warming, more than 50% of the agricultural area in each country is projected to be exposed to severe droughts of longer than one year in a 30-year period. Using standard population projections, it is estimated that 80%-100% of the population in Brazil, China, Egypt, Ethiopia and Ghana (and nearly 50% of the population of India) are projected to be exposed to a severe drought lasting one year or longer in a 30-year period. In contrast, we find that meeting the long-term temperature goal of the Paris Agreement, that is limiting warming to 1.5 °C above pre-industrial levels, is projected to greatly benefit all of the countries in this study, greatly reducing exposure to severe drought for large percentages of the population and in all major land cover classes, with Egypt potentially benefiting the most

    In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials.

    Get PDF
    BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs

    Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDermâ„¢).

    Get PDF
    BACKGROUND: The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. METHOD: BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. RESULTS: For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. CONCLUSIONS: The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully

    Deep-learning segmentation of fascicles from microCT of the human vagus nerve

    Get PDF
    IntroductionMicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts.MethodsHere, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve.ResultsThe U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles.DiscussionThis network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies

    Altered DNA Methylation in Leukocytes with Trisomy 21

    Get PDF
    The primary abnormality in Down syndrome (DS), trisomy 21, is well known; but how this chromosomal gain produces the complex DS phenotype, including immune system defects, is not well understood. We profiled DNA methylation in total peripheral blood leukocytes (PBL) and T-lymphocytes from adults with DS and normal controls and found gene-specific abnormalities of CpG methylation in DS, with many of the differentially methylated genes having known or predicted roles in lymphocyte development and function. Validation of the microarray data by bisulfite sequencing and methylation-sensitive Pyrosequencing (MS-Pyroseq) confirmed strong differences in methylation (p<0.0001) for each of 8 genes tested: TMEM131, TCF7, CD3Z/CD247, SH3BP2, EIF4E, PLD6, SUMO3, and CPT1B, in DS versus control PBL. In addition, we validated differential methylation of NOD2/CARD15 by bisulfite sequencing in DS versus control T-cells. The differentially methylated genes were found on various autosomes, with no enrichment on chromosome 21. Differences in methylation were generally stable in a given individual, remained significant after adjusting for age, and were not due to altered cell counts. Some but not all of the differentially methylated genes showed different mean mRNA expression in DS versus control PBL; and the altered expression of 5 of these genes, TMEM131, TCF7, CD3Z, NOD2, and NPDC1, was recapitulated by exposing normal lymphocytes to the demethylating drug 5-aza-2′deoxycytidine (5aza-dC) plus mitogens. We conclude that altered gene-specific DNA methylation is a recurrent and functionally relevant downstream response to trisomy 21 in human cells

    The United Kingdom and British Empire: A Figurational Approach

    Get PDF
    Drawing upon the work of Norbert Elias and the process [figurational] sociology perspective, this article examines how state formation processes are related to, and, affected by, expanding and declining chains of international interdependence. In contrast to civic and ethnic conceptions, this approach focuses on the emergence of the nation/nation-state as grounded in broader processes of historical and social development. In doing so, state formation processes within the United Kingdom are related to the expansion and decline of the British Empire. That is, by focusing on the functional dynamics that are embedded in collective groups, one is able to consider how the UK’s ‘state’ and ‘imperial’ figurations were interdependently related to changes in both the UK and the former British Empire. Consequently, by locating contemporary UK relations in the historical context of former imperial relationships, nationalism studies can go ‘beyond’ the nation/nation-state in order to include broader processes of imperial expansion and decline. Here, the relationship between empire and nationalism can offer a valuable insight into contemporary political movements, especially within former imperial groups

    Invading Basement Membrane Matrix Is Sufficient for MDA-MB-231 Breast Cancer Cells to Develop a Stable In Vivo Metastatic Phenotype

    Get PDF
    1 - ArticleIntroduction: The poor efficacy of various anti-cancer treatments against metastatic cells has focused attention on the role of tumor microenvironment in cancer progression. To understand the contribution of the extracellular matrix (ECM) environment to this phenomenon, we isolated ECM surrogate invading cell populations from MDA-MB-231 breast cancer cells and studied their genotype and malignant phenotype. Methods: We isolated invasive subpopulations (INV) from non invasive populations (REF) using a 2D-Matrigel assay, a surrogate of basal membrane passage. INV and REF populations were investigated by microarray assay and for their capacities to adhere, invade and transmigrate in vitro, and to form metastases in nude mice. Results: REF and INV subpopulations were stable in culture and present different transcriptome profiles. INV cells were characterized by reduced expression of cell adhesion and cell-cell junction genes (44% of down regulated genes) and by a gain in expression of anti-apoptotic and pro-angiogenic gene sets. In line with this observation, in vitro INV cells showed reduced adhesion and increased motility through endothelial monolayers and fibronectin. When injected into the circulation, INV cells induced metastases formation, and reduced injected mice survival by up to 80% as compared to REF cells. In nude mice, INV xenografts grew rapidly inducing vessel formation and displaying resistance to apoptosis. Conclusion: Our findings reveal that the in vitro ECM microenvironment per se was sufficient to select for tumor cells with a stable metastatic phenotype in vivo characterized by loss of adhesion molecules expression and induction of proangiogenic and survival factors

    Should low-wage workers care about where they work? : Assessing the impact of employer characteristics on low-wage mobility

    Full text link
    This paper studies the importance of employer-specific determinants in escaping low earnings in Germany. To address the initial conditions problem and the endogeneity of employer retention, we model (intra-firm) low-pay transitions using a multivariate Probit model that accounts for selection into low-wage employment and non-random employer drop-out. Using data from the LIAB Linked Employer–Employee panel, our results indicate that for male workers from the service sector the probability of escaping low-pay increases with employer size. This contrasts with female workers from the service sector, who rather benefit from collective bargaining coverage and local works councils. These findings are consistent with internal labour markets being an important ingredient of male within-firm wage growth, whereas the removal of asymmetric information appears to be more relevant in explaining female workers’ wage transitions
    • …
    corecore