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Comparative Analysis of Mutant 
Huntingtin Binding Partners in 
Yeast Species
Yanding Zhao1, Ashley A. Zurawel2, Nicole P. Jenkins2, Martin L. Duennwald3, Chao Cheng1,4, 
Arminja N. Kettenbach2 & Surachai Supattapone2,5

Huntington’s disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in 
Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in 
selective neuronal populations remain poorly understood. Interestingly, heterologous expression of 
expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces 
pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we 
used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt 
in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins 
reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and 
mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact 
preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as 
proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ 
expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and 
Q/N-rich proteins, particularly within nucleoli and mitochondria.

Proteins containing polyglutamine (polyQ) stretches (defined as sequences of >10 consecutive glutamine res-
idues) are expressed in all known eukaryotic species1. PolyQ proteins are believed to facilitate protein-protein 
interactions2–4, and participate in a wide range of biological functions, including cell cycle regulation5, transcrip-
tional regulation, and chromatin maintenance1. The distribution of polyQ proteins varies greatly between differ-
ent species; for instance, ~5% and ~11% of all proteins in Drosophila melanogaster and Dictyostelium discoideum, 
respectively, contain polyQ stretches, whereas only ~0.07% of all proteins in Schizosaccharomyces pombe contain 
polyQ stretches1.

In humans, a group of related monogenic neurodegenerative diseases are caused by mutations of specific 
polyQ proteins, which cause expansion of the polyQ stretches within those proteins beyond a threshold length6. 
For instance, Huntington’s disease is caused by expansion of the Huntingtin (Htt) polyQ stretch beyond 35 resi-
dues7. Mutant Htt accumulates within intra-nuclear inclusions, especially in medial spiny neurons of the striatum, 
and eventually causes neuronal dysfunction and death8,9. Toxicity from polyQ expansion appears to contribute 
significantly to the disease10, and polyQ-initiated neurodegeneration can be modelled by transgenic expression of 
expanded polyQ Htt in a variety of model organisms, including mice11, fruit flies12, and nematodes13–15.

Interestingly, expression of the Htt polyQ stretch also causes cellular toxicity in the budding yeast 
Saccharomyces cerevisiae in a polyQ length-dependent manner16–18, and there are many similarities in the pat-
tern of toxicity induced by mutant Htt between neurons and S. cerevisiae18. In particular, polyQ toxicity in both 
cell types is characterized by: (1) interactions between mutant Htt with other polyQ and Q/N-rich (prion-like) 
proteins19–29; (2) defects in endoplasmic reticulum (ER) protein quality control30,31; (3) cytoskeletal changes32; (4) 
transcriptional dysregulation33–35; (5) mitochondrial dysfunction31,32,36,37; and (6) apoptosis32. Moreover, genetic 
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screens in S. cerevisiae have identified modifiers for each of these processes, supporting their functional involve-
ment in the cell death pathway38–42.

It has been hypothesized that mutant Htt initiates cell death by sequestering other proteins into aggregates, 
thereby making them unavailable to perform their normal regulatory or enzymatic functions3,43. Consistent 
with this hypothesis, there appears to be a general correlation between the presence of Htt aggregates and cell 
death in a variety of model organisms, including S. cerevisiae19,24,44 and Dictyostelium discoideum, in which a 
strong chaperone network prevents aggregate formation45. However, we recently reported that the fission yeast, 
Schizosaccharomyces pombe, a species that notably contains very few endogenous polyQ and Q/N-rich proteins, 
provides an exception to this correlation46. Although expression of 103Q-Htt in S. pombe produces intracellular 
aggregates, no cytotoxicity or growth defects are observed.

Here, we sought to perform a comprehensive and unbiased mass spectrometry/bioinformatic analysis of 
the endogenous proteins in both S. cerevisiae and S. pombe that selectively bind to Htt aggregates in a polyQ 
length-dependent manner. This quantitative analysis provides a unique opportunity to systematically study the 
effect of polyQ expansion on protein-protein interactions in two distantly-related yeast species with different 
levels of endogenous polyQ and Q/N-rich proteins and different toxicity phenotypes.

Materials and Methods
Yeast Strains and Methods.  S. cerevisiae strains [P3nmt1-FLAG-HTT(25Q)- green fluorescent protein 
(GFP)::leu1 + leu1-32 h- and P3nmt1-FLAG-HTT(103Q)-GFP::leu1 + leu1-32 h] [PIN + ] were supplied by 
M.D. (University of Western Ontario, Canada)25. The GAL1 inducible promoter controls Htt expression in these 
strains. Growth and induction for expression was performed by growing strains in selective media using a 1% 
glucose/1% galactose carbon source (Complete supplement mixture (CSM)-his: MP Biomedicals, Santa Ana, 
CA; Yeast Nitrogen Base: US Biologicals Salem, MA; Sigma Aldrich, St. Louis, MO; Galactose: Sigma Aldrich, St. 
Louis, MO; Glucose: Thermo Fisher Scientific, Waltham, MA) to mid-log phase, and then pelleting and washing 
the cells three times with H20 before re-suspending in selective media with a 2% galactose/0.2% glucose carbon 
source.

S. pombe strains [MATα PGAL1-FLAG-HTT(25Q)-CFP::his3 + can1-100 ade2-1 his3-11, 15 trp1-1 ura3-1 
leu23,112 and MATα PGAL1-FLAG-HTT(103Q)-CFP::his3 + can1-100 ade2-1 his3-11, 15 trp1-1 ura3-1 
leu23,112] were generated, as previously described46. Briefly, S. pombe strains and media were made using stand-
ard methods47, and transformed into JM837 (leu1-32 h-). The growth and induction of strains was performed 
in selective or Edinburgh minimal media (EMM: MP Biomedicals, Santa Ana, CA). containing 15 μM thiamine 
(Sigma Aldrich, St. Louis, MO) to mid-log phase, followed by pelleting and washing the cells three times with H20 
before resuspending them in selective or minimal media without thiamine.

Immunoprecipitation Using Anti-FLAG Beads.  Immunoprecipitation reactions were done in biologi-
cal triplicates for each strain: S. cerevisiae Htt-25Q, S. cerevisiae Htt-97Q, S. pombe Htt-25Q, and S. pombe Htt-
103Q, as previously described4 by growing yeast cells to mid-log phase and inducing protein expression. Cells 
were then grown to mid-log phase for 16 hrs and cells were collected and pelleted. Pellets were washed twice 
in buffer [20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Sigma Aldrich) pH 7.4, 1 mM 
ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich), 300 mM NaCl (Thermo Fisher Scientific), 0.2% Triton 
(Sigma) with EDTA-free protease inhibitors (Roche, Indianapolis, IN)] and transferred to screw-cap tubes. Half 
of the volume of glass beads were added and cells were lysed using a Mini-bead-beater 16 (Biospec, Bartlesville, 
OK) at 4 °C twice in 1-min bursts, keeping tubes chilled on ice in-between. Cell lysate was then transferred to a 
new microfuge tube by puncturing a hole in the bottom of the Eppendorf using a 25-G needle (BD Biosciences, 
San Jose, CA) and briefly spinning at 5,000 × g. Cells were then centrifuged for 5 minutes at 16,000 × g at 4 °C to 
pellet the cell debris. Supernatant was then taken and incubated with 25 μL (≥0.6 mg/mL binding capacity, resin 
in 50% suspension) anti-FLAG M2 Magnetic Beads (Sigma Aldrich, St. Louis, MO) for each 1.5 mL of cell lysate 
(equivalent to no more than 125 optical density at 600 nm (OD) of cells) by end-over-end rotation for 1 hr at 4 °C. 
Beads were washed thoroughly using 1.5 mL of the lysis buffer in four sequential washes, using a magnetic bead 
separator to take off the eluate in between steps. For large-scale experiments, at least 500 OD of cells were used 
for each sample; for small-scale experiments, 25 OD of cells were harvested. Samples were eluted by boiling the 
magnetic beads in 60 μL of modified sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
buffer [0.2 M Tris pH 6.8 (Invitrogen, Carlsbad, CA), 8% SDS (Sigma), 20% beta-mercaptoethanol (Omnipur, 
Billerica MA)] for 15 min.

Prior to mass spectrometry, aliquots of immunoprecipitated samples were analysed using SDS-PAGE gel elec-
trophoresis using a 12% polyacrylamide gel followed by Coomassie staining (Thermo Fisher Scientific) or western 
blotting, as previously described48 using a monoclonal anti-FLAG M2 antibody (Sigma Aldrich) for primary 
detection.

Mass Spectrometry.  The remainder of each immunoprecipitated sample was TCA precipitated and digested 
in solution with trypsin in 50 mM ammonium bicarbonate. Reactions were quenched by the addition of 50% 
acetonitrile/5% formic acid and dried. Peptides were analysed on a Q-Exactive Plus mass spectrometer (Thermo 
Fisher Scientific, San Jose, CA) equipped with an Easy-nLC 1000 (Thermo Fisher Scientific), as previously 
reported49. Protein quantification was performed by Intensity Based Absolute Quantification (iBAQ)50. Protein 
intensities were calculated as the sum of all identified peptide intensities using MassChroQ51. Protein intensi-
ties were divided by the number of theoretically observable peptides (calculated by in silico protein digestion, 
all fully-tryptic peptides between 6 and 30 amino acids were counted while missed cleavages were neglected). 
Protein abundances were log2-transformed and normalized based on Htt abundance (Fig. S1 and Table S1).
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Bioinformatic Analysis.  Unbinned analyses.  Based on the processed protein abundance data, we applied 
a small sample size t-test by using the limma package in R 3.2.2. Then, to correct for multiple hypothesis testing, 
we calculated the false discovery rate (FDR) for each protein. Fold change for each protein was calculated as the 
ratio of average protein abundances in the expanded polyQ Htt (i.e., either Htt-97Q or Htt1-103Q) versus the Htt-
25Q control pull-downs. The relationship between fold change and FDR was visualized using a log-log volcano 
plot. Subsequently, these two parameters (FDR and fold change) were also used to classify the proteins into three 
non-overlapping primary categories for binned analyses, as described below.

Protein classification.  Proteins that were co-immunoprecipitated solely by expanded polyQ Htt (i.e., undetect-
able in the Htt-25Q control pull-down data set) and had FDR < 0.2, were classified as “expanded polyQ spe-
cific.” Proteins with >4-fold change (between the expanded polyQ Htt and Htt-25Q control pull-downs) and had 
FDR < 0.2 were classified as “expanded polyQ enriched.” Proteins with <1.5-fold change (between the expanded 
polyQ Htt and Htt-25Q control pull-downs) and FDR > 0.2 were classified as “expanded polyQ non-enriched.” In 
addition to the three primary categories, we also defined a derivative category (“expanded polyQ associated”) as 
the combination of the expanded polyQ specific and expanded polyQ enriched bins.

Binned category analyses.  In order to perform global comparisons, a Fisher’s exact test was used to test the rel-
ative prevalence of the characteristic being analysed (as determined by using publicly accessible data sets listed 
below) among proteins of each defined category (expanded polyQ specific, expanded polyQ enriched, expanded 
polyQ associated and the expanded polyQ non-enriched) compared to the prevalence of the characteristic 
in either the whole yeast proteome or all pulled-down proteins. For comparisons between groups, a Fisher’s 
exact test was used to test the relative prevalence of each characteristic among the proteins in three categories 
(expanded polyQ specific, expanded polyQ enriched and expanded polyQ associated) compared to genes in the 
expanded polyQ non-enriched (control) category.

Data Sets.  All the datasets used for analyses can be found in Table 1. Where needed, we mapped the protein ID 
from the mass spectrometry data set to gene ID using the mapping file downloaded from EnsemblFungi (http://
fungi.ensembl.org/index.html). GO-derived terms were defined by sorting all the cellular compartment-related 
GO terms according to broad cellular localization terms.

Significance Statement.  This work represents the first comprehensive and unbiased analysis of 
protein-protein interactions of polyQ expansion proteins in cells that are susceptible to polyQ toxicity, compared 
to cells that are resistant to polyQ toxicity. Our results suggest that endogenous polyQ and Q/N-rich proteins 
play an important role in mediating cellular toxicity through protein-protein interactions, and also reveal the 
preferential sequestration of nucleolar and mitochondrial proteins in cells that are susceptible to polyQ toxicity.

Results
PolyQ expansion increases Htt interactions in both yeast species.  Proteins with long polyQ 
stretches, such as Htt, often form aggregates. Therefore, we used a magnetic bead-capture and SDS denaturation 
method to identify all proteins that are preferentially bound to expanded polyQ Htt molecules, whether or not 
they are physically incorporated into aggregates

We used previously described yeast strains expressing a FLAG-tagged Htt exon 1-GFP construct with either 
a short (25Q) or expanded (97Q in S. cerevisiae or 103Q in S. pombe) polyQ stretch46. The expanded polyQ Htt 
proteins form aggregates as determined by microscopy in both species46. We employed a coupled anti-FLAG 
monoclonal antibody to capture Htt protein complexes from yeast cell lysates. Western blots confirmed quantita-
tive recovery of Htt from both S. cerevisiae (Fig. 1a) and S. pombe (Fig. 1b). Of note, we observed a full recovery of 
Htt-97Q in S. cerevisiae and Htt-103Q in S. pombe (Fig. 1a,b, compare input vs. immunoprecipitation (IP)-bound 
lanes), indicating that the FLAG epitope remains accessible in expanded polyQ aggregates of Htt. Analysis of the 
IP-bound fraction from S. cerevisiae that expressed Htt-97Q (using a Coomassie-stained SDS-PAGE gel) shows 
enrichment of a subset of Htt-interacting proteins that differs from crude cell lysate (Fig. S2), indicating that the 
fraction of proteins that are able to be analysed by gel electrophoresis are distinct in our experimental samples.

Analyses performed Dataset

Coiled-coil motif analysis European Bioinformatics Institute website (http://www.ebi.ac.uk/reference_proteomes)

Zinc finger motif analysis SCOP database (http://scop.mrc-lmb.cam.ac.uk/scop/)

Prion-like domain analysis 86

PolyQ analysis Uniprot website (http://www.uniprot.org).

Essentiality analysis Yeast Deletion Project (http://www-sequence.stanford.edu/group/yeast_deletion_project)

Gene Ontology analysis Gene ontology website (http://geneontology.org/)

Protein domain annotation analysis European Bioinformatics Institute website (http://pfam.xfam.org)

Htt toxicity analysis 38,40–42.

Disordered proteins analysis DisProt (http://www.disprot.org)

Table 1.  Datasets used for Biostatistical Analyses.

http://fungi.ensembl.org/index.html
http://fungi.ensembl.org/index.html
http://www.ebi.ac.uk/reference_proteomes
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.uniprot.org
http://www-sequence.stanford.edu/group/yeast_deletion_project
http://geneontology.org/
http://pfam.xfam.org
http://www.disprot.org
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We then used mass spectrometry (MS) to identify and quantitate endogenous proteins bound to either 
expanded polyQ Htt or Htt-25Q control bait in each of the IP-bound samples from both yeast species in biological 
triplicates (Fig. 2a and Supplementary Table S1). From these mass spectroscopy (MS) data sets, we used a rigorous 
combination of both fold change and FDR to characterize the proteins by comparing the relative abundance of 
each protein immunoprecipitated by expanded polyQ Htt versus Htt-25Q control. This analysis shows that many 
of the proteins detectable by MS in both species bound preferentially to expanded polyQ Htt, and a subset bound 
exclusively to expanded polyQ Htt (Fig. 2b). Based on the distribution of the fold change and FDR parameters 
(Fig. 2b), we defined three non-overlapping primary bin categories for subsequent analyses (Fig. 2b,c): expanded 
polyQ specific (red), expanded polyQ enriched (blue), and expanded polyQ non-enriched (green). We also 
defined the combination of the expanded polyQ specific and expanded polyQ enriched categories as “expanded 
polyQ associated” (Fig. 2c).

Binding of essential proteins to expanded polyQ Htt in both species.  Since polyQ expansion is 
expected to increase the overall number of Htt protein-protein interactions, it is reasonable to hypothesize that 
cell death in susceptible cell types might be caused by a particularly large increase in the number of aberrant inter-
actions between expanded polyQ Htt and essential proteins. Binding to misfolded Htt could lead to bulk seques-
tration, mis-localization, or inactivation of such proteins, potentially compromising their essential functions.

Figure 1.  Western blot of anti-FLAG immunoprecipitation. Htt was immunoprecipitated from (a) S. cerevisiae 
and (b) S. pombe Htt-expression strains using an anti-FLAG mAb coupled to magnetic beads, as described 
in Methods. Equivalent quantities (25 OD) of whole cell lysate, input, unbound, and IP-bound samples were 
loaded and detected with anti-FLAG mAb. Note that the two sides of panel A are cropped from different regions 
of the same gel. The complete gel is shown at the end of the Supplementary Information document.
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Figure 2.  (a) Experimental design of proteomic analysis of Htt Co-IP proteins from S. cerevisiae and S. pombe. 
Inducible Htt exon 1 flanked by an N-terminal FLAG tag and a repeat stretch of 25Q or 103Q in S. pombe (top) 
or 25Q or 97Q in S. cerevisiae (bottom), and by a C-terminal GFP tag, was genomically integrated. Following 
induced expression, cultures were grown to mid-log phase and prepared for co-IP using magnetic beads 
with a conjugated anti-FLAG antibody. The Htt-bound specific proteins were identified and their abundance 
determined using a quantitative mass spectrometry approach; the data was then subjected to statistical analysis 
and classification. (b) Volcano plot of expanded co-IP proteins from S. cerevisiae and S. pombe. The volcano 
plots show the relation between the FDR and the fold change of expanded (designated by ↑) polyQ specific, 
enriched, and non-enriched groups in S. cerevisiae (left) and S. pombe (right). The Y-axis indicates the negative 
log10-transformed FDR of proteins in each group, and the X-axis shows log2-transformed fold change of 
proteins in each group. The dashed line intersecting the X-axis shows the fold change threshold to define each 
group and the dashed line intersecting the Y-axis shows the FDR threshold to define each group.  
(c) Protein classification of the expanded Htt co-IP proteins. Percentages of each group (expanded polyQ 
specific, expanded polyQ enriched, and expanded polyQ non-enriched) in the co-IP proteins from S. cerevisiae 
(left) and S. pombe (right).
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We therefore analysed the effect of polyQ expansion on Htt binding to essential proteins in both S. cerevisiae 
and S. pombe. Our results indicated that essential proteins are overrepresented in the expanded polyQ-associated 
subset in both species (Fig. 3 and Supplementary Table S2). Further, whereas essential proteins comprised ~18% 
of all proteins in the proteome of S. cerevisiae, they comprised ~25% of the expanded polyQ-associated proteins 
in that species (representing an enrichment score of 1.40 relative to proteome and 1.08 relative to all pulled-down 
proteins). Similarly, whereas ~26% of all proteins in the S. pombe were essential, ~36% of S. pombe expanded 
polyQ-associated proteins were essential (representing an enrichment score of 1.41 relative to proteome and 1.46 
relative to all pulled-down proteins).

To examine whether the observed overrepresentation of essential proteins among proteins associated with 
expanded polyQ Htt in both species might be due in part to preferential detection of abundant proteins by MS, 
we repeated our analyses using expanded polyQ non-enriched proteins as a control group for comparison. We 
observed no overrepresentation of essential proteins in this group in S. cerevisiae (enrichment score = 1.02), 
and a slight underrepresentation in S. pombe (enrichment score = 0.90) (Fig. 3 and Supplementary Table S2). 
Taken together, the data indicate that although essential proteins may be overrepresented in the expanded 
polyQ-associated subsets, the level of overrepresentation is similar between the two species of yeast. Therefore, 
the relative resistance of S. pombe to expanded Htt toxicity cannot be explained by differential binding to essential 
proteins.

Localization and biological functions of proteins bound to expanded polyQ Htt differ between 
S. cerevisiae and S. pombe.  Since a similar proportion of total essential proteins appear to associate with 
expanded polyQ Htt in S. cerevisiae and S. pombe, we hypothesized that the differential toxicity resulting from 
expanded polyQ Htt in these two species might be due to specific differences in the cellular localization and/or 
biological processes of the bound proteins. To examine this possibility, we used the gene ontology (GO) database 
to categorize and compare the localization and biological processes of proteins in the expanded polyQ-associated 
subsets from both species.

Interestingly, we observed several marked differences in the cellular compartmentalization of expanded 
polyQ-associated proteins between the two species of yeast (Fig. 4a,b). Most notably, in S. cerevisiae, nucleo-
lar and mitochondrial proteins were overrepresented by ~2 fold and ~1.8 fold, respectively, in the expanded 
polyQ-associated subset. In contrast, in S. pombe, nucleolar proteins were only overrepresented by ~1.4 fold in 
the expanded polyQ-associated subset, while mitochondrial proteins were slightly underrepresented. Cytoskeletal 
proteins, on the other hand, were overrepresented ~2.2 fold in the expanded polyQ-associated subset of S. pombe, 
but not significantly overrepresented in the expanded polyQ-associated subset of S. cerevisiae. Proteins localized 
to intracellular vesicles were overrepresented ~1.6-fold in the expanded polyQ-associated subsets of both species.

Figure 3.  Essentiality analysis of expanded Htt co-IP proteins specific proteins. The bar-plot shows the 
percentage of essential genes of each group in S. cerevisiae (blue) and S. pombe (yellow). The Y-axis indicates the 
percentage of essential genes, and the X-axis shows the name of each group. Dashed lines show the background 
percentage of essential genes in the genome of S. cerevisiae (blue) and S. pombe (yellow). Asterisk shows the 
statistical significance in each group (*P < 0.05, **P < 0.01), calculated by the Fisher’s exact test. Detailed values 
and statistical results are provided in Supplementary Table 2.
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The overrepresentation of nucleolar and mitochondrial proteins in the expanded polyQ-associated subsets of 
S. cerevisiae was accompanied by a similar overrepresentation of biological processes that are carried out within 
those organelles (Fig. 4c, Supplementary Table S3). For the nucleolus, these included 5 categories from among the 
10 most highly-overrepresented biological processes: ribosomal subunit export, ribosomal large subunit biogene-
sis, transcription from RNA polymerase I promoter, ribosomal small subunit biogenesis, and snoRNA processing. 
For mitochondria, these included 2 categories out of the 13 most highly-overrepresented biological processes: 
mitochondrial translation and mitochondrial organization. In contrast, only one biological process related to the 
nucleolus was overrepresented among expanded polyQ-associated proteins in S. pombe, and no biological pro-
cesses related to mitochondria were overrepresented. The most overrepresented biological processes in S. pombe 

Figure 4.  GO analysis of expanded co-IP proteins from S. cerevisiae and S. pombe. (a) Cellular compartment 
GO-derived terms (see Methods) were used to classify the cellular localization of expanded polyQ-associated 
group co-IP identifications; S. cerevisiae (red) and S. pombe (teal). Htt-97Q and Htt-103Q expanded polyQ-
associated group co-IP identifications. The statistical significance indicated by *P < 0.05, calculated by Fisher’s 
exact test. (b) Cellular compartmentalization analysis of GO-derived terms used to classify the cellular 
localization of S. cerevisiae (top) and S. pombe (bottom). Statistical significance is relative to the expanded polyQ 
non-enriched group for each species. (c) GO Slim biological process enrichment analysis of Htt-97Q and Htt-
103Q expanded polyQ-associated group co-IP identifications in S. cerevisiae (red) and S. pombe (teal). GO Slim 
terms related to biological function that overlapped between the two species were chosen for the analysis. The 
Y-axis shows the gene ontology terms in S. cerevisiae and S. pombe. The X-axis shows the enrichment ratio for 
each gene ontology term in S. cerevisiae and S. pombe. The dashed line indicates an enrichment ratio equals to 1. 
The statistical significance was indicated by *P < 0.05; calculated by the Fisher’s exact test.
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were cytoplasmic translation and cellular amino acid metabolism (both with enrichment ratios ~2.5) (Fig. 4c and 
Supplementary Table S3), and neither of these processes was overrepresented in S. cerevisiae.

Binding of endogenous polyQ and prion domain proteins to expanded polyQ Htt in S. cerevi-
siae.  A major difference between the proteomes of S. cerevisiae and S. pombe that might contribute to their 
differential susceptibility to expanded polyQ Htt-related toxicity is that S. pombe has very few endogenous pro-
teins with either polyQ or prion (Q/N-rich) domains1. In support of this idea, previous studies have shown that 
several other endogenous prion-like proteins in S. cerevisiae appear to facilitate Htt-97Q-induced toxicity through 
protein-protein interactions19,24,41. Therefore, we performed a comprehensive and unbiased analysis of endoge-
nous polyQ and prion-like proteins that preferentially bind expanded polyQ Htt in S. cerevisiae.

Our results revealed a ~3.8-fold overrepresentation of endogenous polyQ proteins in the expanded 
polyQ-specific subset, compared to the whole proteome (Fig. 5a and Supplementary Table S4). Surprisingly, there 
did not appear to be any correlation between either the overall length or number of polyQ stretches within each 
protein and specific binding to Htt-97Q (Fig. 5b and Supplementary Table S5).

The results also showed a ~1.9-fold overrepresentation of endogenous prion-like proteins associated with 
Htt-97Q (Fig. 5c). Furthermore, the overrepresentation of both polyQ and prion domains in the expanded 
polyQ-associated subset of S. cerevisiae was also statistically significant when compared to their representa-
tion in the control expanded polyQ non-enriched subset (Supplementary Table S6). In contrast, proteins with 
intrinsically disordered domains were not enriched in the expanded polyQ-associated subset (Supplementary 
Table S7). It was not possible to perform adequately powered statistical analyses of polyQ and prion domains 
among expanded polyQ-associated proteins in S. pombe due to the natural scarcity of endogenous polyQ and 
prion-like proteins in that species (Supplementary Tables 5 and 6). Overall, these data confirmed that polyQ 
expansion causes Htt to interact with many endogenous polyQ and prion-like proteins in S. cerevisiae.

The coiled-coil motif is overrepresented among expanded polyQ-associated proteins in  
S. cerevisiae.  It has been proposed that polyQ stretches can extend coiled-coils to promote protein-protein 
interactions1,4,52. Since our data indicated that Htt-97Q preferentially binds endogenous polyQ proteins in S. cer-
evisiae, we performed an additional analysis to determine the prevalence of coiled-coil motifs among expanded 
polyQ-associated proteins. The results of this analysis confirmed overrepresentation of this motif in S. cerevisiae 
(~1.6 fold), but not in S. pombe (Fig. 6a and Supplementary Table S8). For comparison, we also analysed the 
relative prevalence of a different structural motif, the zinc finger, among expanded polyQ-associated proteins 
(Fig. 6b). In contrast to coiled-coils, the zinc finger motif was not overrepresented in expanded polyQ-associated 
proteins, suggesting that the interaction between coiled-coil proteins and expanded polyQ Htt is relatively 
specific.

Several Htt-97Q toxicity suppressors preferentially bind expanded polyQ Htt in S. cerevi-
siae.  Previous studies have identified specific genes that function as suppressors of Htt-97Q toxicity in S. 
cerevisiae38,40–42. We hypothesized that Htt-97Q might specifically bind to and sequester some of the proteins 
encoded by these suppressor genes. Therefore, we compared the relative abundance of each of these proteins 
within our data subsets, and identified six expanded polyQ-specific and three expanded polyQ-enriched pro-
teins among known suppressors (Supplementary Table S9). Interestingly, a mitochondrial protein (TIM10) and a 
chromatin-remodelling protein (NHPB6) were among the expanded polyQ-specific proteins previously identified 
as functional suppressors of Htt-97Q toxicity.

Discussion
A comparative, proteome-wide approach to studying polyQ expansion-dependent pro-
tein-protein interactions.  A leading hypothesis for the cellular toxicity of expanded polyQ proteins (like 
pathogenic Htt) is that they perturb endogenous protein-protein interactions26,53–57. In this study, we used an 
unbiased, systematic, and quantitative approach to compare the protein-protein interactions of expanded polyQ 
Htt in two yeast species that display different susceptibilities to Htt-induced toxicity46. Overall, a similar percent-
age of all essential proteins preferentially bound to expanded polyQ in both species, indicating that the difference 
in expanded polyQ Htt toxicity displayed by S. cerevisiae versus S. pombe cannot be explained simply by the 
degree to which essential proteins are sequestered. We then interrogated our data sets in greater detail to deter-
mine what more specific factors might be responsible for expanded polyQ-Htt-induced toxicity in S. cerevisiae. Of 
note, our analyses seek to identify interactions with different species of polyQ Htt, including soluble monomeric 
or oligomeric and aggregated species. This is important because the role of polyQ aggregation in polyQ toxicity 
remains unclear16, and we thus did not want to limit our analyses to aggregated polyQ Htt.

Nucleolar and mitochondrial proteins preferentially bind expanded polyQ Htt in S. cerevi-
siae.  We hypothesized that the observed difference in toxicity between the two yeast species might be due 
to specific differences in the cellular locations and functions of the bound proteins. Using gene ontology (GO) 
analyses, we found a striking overrepresentation of mitochondrial localization and function among expanded 
polyQ-associated proteins in S. cerevisiae, but not S. pombe. Although Htt aggregates are not known to enter mito-
chondria, they have been shown to block the import of mitochondrial proteins from the cytoplasm58. Therefore, 
expanded polyQ Htt aggregates have an opportunity to sequester mis-localized mitochondrial proteins within the 
cytoplasm. In addition, expanded polyQ Htt aggregates increase the rate of mitochondrial fragmentation59, which 
might allow some mitochondrial proteins to leak into the cytoplasm. Our results are consistent with a recent 
report showing enhanced sequestration of mitochondrial proteins in yeast expressing expanded polyQ Htt60. 
Previous studies have also shown direct interaction between expanded polyQ Htt with the outer mitochondrial 
membrane proteins contributes in yeast cells, leading to a dysfunctional cellular respiration61. More broadly, a 
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number of other studies have also shown that changes in cellular respiration are associated with polyQ disorders 
and other neurodegenerative diseases2,62–78.

We also found a notable overrepresentation of nucleolar proteins among expanded polyQ-associated 
proteins in S. cerevisiae, which was less pronounced in S. pombe. Previously, we showed by dual-channel flu-
orescence microscopy that a fraction of expanded polyQ Htt aggregates localize to the nucleus of yeast cells, 
providing nucleolar proteins an opportunity to interact with Htt aggregates46. Recently, it has been reported that 

Figure 5.  Prion domain enrichment analysis and polyQ length analysis in expanded Htt co-IP proteins.  
(a) The bar-plot shows the percentage proteins with polyQ stretch of each group in S. cerevisiae (no proteins 
with polyQ stretches were found in the S. pombe groups). The Y-axis indicates the percentage of proteins with 
polyQ stretch, and the X-axis shows the name of each group. The dashed lines show the background percentage 
of proteins with polyQ stretch in the proteome of S. cerevisiae. Asterisk shows the statistical significance in each 
group (*P < 0.05), calculated by the Fisher’s exact test. Detailed values and statistical results are provided in 
Supplementary Table 4. (b) The bar-plot shows the proteins with polyQ stretch of each group in S. cerevisiae. 
Y-axis indicates the length of polyQ for each protein, and X-axis shows the name of the proteins. Different 
groups are indicated in different colours [expanded polyQ specific (blue), expanded polyQ enriched (red), and 
expanded polyQ non-enriched (green) in S. cerevisiae]. Proteins with multiple polyQ stretches are labelled in 
red. (c) The bar-plot shows the percentage of proteins with prion domains of each group in S. cerevisiae. The 
Y-axis indicates the percentage of proteins with coiled-coil motifs, and the X-axis shows the name of each 
group. The dashed lines show the background percentage of proteins with prion domains in the proteome of S. 
cerevisiae (blue). Statistical significance in each group demonstrated by *P < 0.05 and **P < 0.01, calculated by 
the Fisher’s exact test. Detailed values and statistical results are provided in Supplementary Table 6.
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polyglutamine toxicity results in increased nucleolar stress79. One effect of nucleolar stress is to increase the sta-
bility of the pro-apoptotic protein p53, thus promoting cell death. While this finding would fit logically with the 
observed increased cell toxicity, further validation and exploration of mechanistic details are required.

In contrast, the most overrepresented cellular functions for expanded polyQ-associated proteins in S. pombe 
included cytoplasmic translation and cellular amino acid metabolic processes. Whether these interactions help 
to protect against Htt-103Q-mediated toxicity in S. pombe or are not sufficiently harmful to cause cellular toxicity 
remains to be investigated.

Expanded polyQ Htt preferentially binds to endogenous polyQ and prion domain proteins.  
The prevalence of endogenous polyQ and prion domain (Q/N-rich) proteins is strikingly different between the 
proteomes of S. cerevisiae and S. pombe. Whereas >80 S. cerevisiae proteins possessed a polyQ stretch, there 
were only 3 polyQ proteins in S. pombe; a similarly large discrepancy in the prevalence of prion domain proteins 
existed between these two species.

Previous studies have suggested that proteins with pathogenic expansion of polyQ stretches can co-aggregate 
with normally benign endogenous polyQ proteins1,2,24. In our study, we found a significant overrepresentation of 
polyQ proteins associated with expanded polyQ Htt in S. cerevisiae. Somewhat surprisingly, the degree of associ-
ation does not appear to correlate with the length of the polyQ stretch on the endogenous protein, suggesting that 
a long polyQ stretch may only be required on one of the binding partners of a heterologous polyQ-polyQ com-
plex. Interestingly, none of the 3 endogenous polyQ proteins in S. pombe (Mug69, Med15, and Sol1) appeared to 
interact with Htt-103Q (Supplementary Table S1). In contrast, YOL051W, the S. cerevisiae homolog of Med15 and 
containing a 23Q stretch, appeared to specifically associate with Htt-97Q (Fig. 5b and Supplementary Table S5). 
The S. cerevisiae homologs of Mug69 and Sol1 are not polyQ proteins.

In addition to an overrepresentation of polyQ proteins, we also found an increased representation of prion 
domain-containing proteins that were selectively pulled-down by Htt-97Q in S. cerevisiae. Interestingly, Q/N-rich 
proteins are thought to be involved in the pathogenesis of a wide variety of neurodegenerative diseases caused 
by protein aggregation, including Alzheimer’s disease, ALS, and frontotemporal lobar degeneration with 
ubiquitin-only immunoreactive neuronal changes (FTLD-U). In polyglutamine diseases, prion-like proteins such 
as FUS/TLS have been found to aggregate in neurons80,81. One limitation of our approach is that it does not allow 
us to distinguish between direct and indirect binding partners. Therefore, we cannot determine if the observed 
overrepresentation of polyQ or prion-like proteins is due to specific binding of these proteins directly to the 
expanded polyQ stretch of Htt, or rather co-aggregation with other components of larger aggregates. Additional 
experiments are required to characterize these interactions in greater detail.

Our findings also revealed that coiled-coil motifs are overrepresented among expanded polyQ-associated 
proteins in S. cerevisiae but not S. pombe. This difference might be caused by the ability of polyQ stretches (which 
are nearly absent in S. pombe) to promote protein-protein interactions of adjacent coiled-coil domains1,4,52. While 
we were able to analyse the prevalence of coiled-coil and zinc finger motifs in our data sets, the analysis of other 

Figure 6.  Coiled-coil motif enrichment analysis of expanded Htt co-IP proteins specific proteins. (a) The bar-
plot shows the percentage of expanded Htt Co-IP proteins with coiled-coil motifs of each group in S. cerevisiae 
(blue) and S. pombe (yellow). Y-axis indicates the percentage of proteins with coiled-coil motifs in each 
group, and X-axis shows the name of each group. Dashed lines show the background percentage of proteins 
with coiled-coil motifs of each group in the proteome of S. cerevisiae (blue) and S. pombe (yellow). Statistical 
significance in each group indicated by *P < 0.05 and **P < 0.01, calculated using a Fisher’s exact test. Detailed 
values and statistical results are provided in Supplementary Table 8. (b) A similar enrichment test was done for 
zinc finger motifs for expanded Htt co-IP proteins in S. cerevisiae (blue) and S. pombe (yellow).
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structural motifs is generally limited by the small size of data sets currently available for other super-secondary 
structural domains.

Several genetic suppressors of Htt-97Q toxicity bind specifically to expanded polyQ Htt.  A 
key advantage of unbiased approaches, such as the one we present, is their ability to explore multiple processes 
simultaneously. On the other hand, pull-down approaches are only able to identify proteins that physically inter-
act with each other, therefore providing no guarantee of functional significance.

Other investigators have previously studied the toxicity of expanded polyQ Htt in S. cerevisiae by conducting 
screens for genes that suppress its toxicity38,40–42. It is possible the proteins encoded by these genes are sequestered 
into aggregates of expanded polyQ Htt in S. cerevisiae, and, therefore, overexpression of the genes would be 
expected restore protein levels and function. We confirmed that nine of the expanded polyQ-associated proteins 
in our data set were encoded by previously identified suppressor genes. One of the polyQ-associated proteins is 
this subgroup is TIM10, a mitochondrial protein identified in a suppressor screen by Mason et al.42. The confir-
mation of TIM10 as an expanded polyQ-specific protein supports the idea that mitochondrial proteins may play 
a central role in mediating polyQ toxicity82–84. Additionally, we found that NHP6B, a chromatin-remodelling 
protein previously identified by Giorgini et al. in their suppressor screen38 is an expanded polyQ-specific pro-
tein. This finding suggests that regulatory changes in the epigenetic control of gene expression could also play 
an important role in the toxicity of Htt in yeast. Interestingly, chromatin remodelling proteins are hypothesized 
to play a role in modulating gene expression in Huntington’s disease85, where they are thought to modulate neu-
ronal gene transcription. While it is not possible to extrapolate our findings in yeast directly to the expanded 
polyQ toxicity seen in neurons, our data suggests that chromatin remodelling may be perturbed through aberrant 
protein-protein interactions.

Conclusions
Overall, our results are consistent with a model in which the toxicity induced by expanded polyQ Htt in S. cere-
visiae might be caused by preferential sequestration of essential nucleolar and mitochondrial proteins, perhaps 
mediated by physical interactions within a network of endogenous polyQ and prion-like proteins that are more 
abundant in S. cerevisiae than S. pombe. Our work also highlights the potential utility of evolutionarily divergent 
yeast species as model systems to study the general effects of polyQ expansion on protein-protein interactions 
and cellular functions.
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