524 research outputs found

    Facilitated diffusion of DNA-binding proteins

    Get PDF
    The diffusion-controlled limit of reaction times for site-specific DNA-binding proteins is derived from first principles. We follow the generally accepted concept that a protein propagates via two competitive modes, a three-dimensional diffusion in space and a one-dimensional sliding along the DNA. However, our theoretical treatment of the problem is new. The accuracy of our analytical model is verified by numerical simulations. The results confirm that the unspecific binding of protein to DNA, combined with sliding, is capable to reduce the reaction times significantly.Comment: 4 pages, 2 figures Nov 22 2005 - accepted for PR

    VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia

    Get PDF
    Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. it controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells

    Investigation on the role of biallelic variants in VEGF-C found in a patient affected by Milroy-like lymphedema

    Get PDF
    Background Milroy-like disease is the diagnostic definition used for patients with phenotypes that resemble classic Milroy disease (MD) but are negative to genetic testing forFLT4. In this study, we aimed at performing a genetic characterization and biochemical analysis of VEGF-C variations found in a female proband born with congenital edema consistent with Milroy-like disease. Methods The proband underwent next-generation sequencing-based genetic testing for a panel of genes associated with known forms of hereditary lymphedema. Segregation analysis was performed on family members by direct sequencing. In vitro studies were performed to evaluate the role of a novel identified variant. Results TwoVEGF-Cvariations were found in the proband, a novel p.(Ser65Arg) and a pathogenic c.148-3_148-2delCA, of paternal and maternal origin, respectively. Functional characterization of the p.(Ser65Arg) variation in vitro showed alterations in VEGF-C processing. Conclusions Our findings reveal an interesting case in which biallelic variants inVEGF-Care found in a patient with Milroy-like lymphedema. These data expand our understanding of the etiology of congenital Milroy-like lymphedema.Peer reviewe

    Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium .

    Full text link
    peer reviewedOBJECTIVE: The endogenous role of the VEGF family member vascular endothelial growth factor-B (VEGF-B) in pathological angiogenesis remains unclear. METHODS AND RESULTS: We studied the role of VEGF-B in various models of pathological angiogenesis using mice lacking VEGF-B (VEGF-B(-/-)) or overexpressing VEGF-B(167). After occlusion of the left coronary artery, VEGF-B deficiency impaired vessel growth in the ischemic myocardium whereas, in wild-type mice, VEGF-B(167) overexpression enhanced revascularization of the infarct and ischemic border zone. By contrast, VEGF-B deficiency did not affect vessel growth in the wounded skin, hypoxic lung, ischemic retina, or ischemic limb. Moreover, VEGF-B(167) overexpression failed to enhance vascular growth in the skin or ischemic limb. CONCLUSIONS: VEGF-B appears to have a relatively restricted angiogenic activity in the ischemic heart. These insights might offer novel therapeutic opportunitie

    Modulation of hippocampal acetylcholine release after fimbria-fornix lesions and septal transplantation in rats

    Get PDF
    Female Long-Evans rats sustained electrolytic lesions of the fimbria and the dorsal fornix causing a partial lesion of the septohippocampal pathway. Two weeks later, the rats received intra-hippocampal grafts of fetal septal cell suspensions. Nine to twelve months later, the release of acetylcholine (ACh) in the hippocampus of sham-operated, lesion-only and grafted rats was measured by microdialysis. The extent of cholinergic (re)innervation was determined by acetylcholinesterase (AChE) staining and densitometry. In both lesion-only and grafted rats, the ratio of ACh release to AChE staining intensity was increased as compared to sham-operated rats, indicating a loss of endogenous inhibitory mechanisms. Scopolamine (0.5 mg/kg i.p.), a muscarinic antagonist, increased ACh release in all treatment groups. 8-OH-DPAT (0.5 mg/kg s.c.), an agonist at serotonergic 5HT1A-receptors, induced an increase of hippocampal ACh release in sham-operated rats. This effect was lost in lesion-only rats, but was fully restored by neuronal grafting. As 8-OH-DPAT influences hippocampal ACh release by a postsynaptic action, this finding indicates that the host brain exerts a serotonergic influence on the grafted cholinergic neurons

    MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection

    Get PDF
    MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities

    Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine

    Get PDF
    In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)—the enzymes responsible for DNA methylation—are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(β-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites

    The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer

    Get PDF
    A positive association between vascular endothelial growth factor-C (VEGF-C) expression and lymph node metastasis has been reported in several cancers. However, the relationship of VEGF-C and lymph node metastasis in some cancers, including non-small cell lung cancer (NSCLC), is controversial. We evaluated the VEGF-C and vascular endothelial growth factor receptor-3 (VEGFR-3) expression in NSCLC samples from patients who had undergone surgery between 1998 and 2002 using real-time quantitative RT–PCR and immunohistochemical staining. We failed to find a positive association between VEGF-C and VEGFR-3 mRNA expression and lymph node metastasis in NSCLC. An immunohistological study demonstrated that VEGF-C was expressed not only in cancer cells, but also in macrophages in NSCLC, and that VEGFR-3 was expressed in cancer cells, macrophages, type II pneumocytes and lymph vessels. The VEGF-C/VEGFR-3 ratio of the node-positive group was significantly higher than that of the node-negative group. Immunohistochemical staining showed that VEGFR-3 was mainly expressed in cancer cells. The immunoreactivity of VEGF-C and VEGFR-3 was roughly correlated to the mRNA levels of VEGF-C and VEGFR-3 in real-time PCR. VEGF-C mRNA alone has no positive association with lymph node metastasis in NSCLC. The VEGF-C/VEGFR-3 ratio was positively associated with lymph node metastasis in NSCLC. This suggests that VEGF-C promotes lymph node metastasis while being influenced by the strength of the VEGF-C autocrine loop, and the VEGF-C/VEGFR-3 ratio can be a useful predictor of lymph node metastasis in NSCLC
    corecore