685 research outputs found

    Radiation Tolerance of Fully-Depleted P-Channel CCDs Designed for the SNAP Satellite

    Full text link
    Thick, fully depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional thin, n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1 MeV electrons at the LBNL Co60 source. These studies indicate that the LBNL CCDs perform well after irradiation, even in the parameters in which significant degradation is observed in other CCDs: charge transfer efficiency, dark current, and isolated hot pixels. Modeling the radiation exposure over a six-year mission lifetime with no annealing, we expect an increase in dark current of 20 e/pixel/hr, and a degradation of charge transfer efficiency in the parallel direction of 3e-6 and 1e-6 in the serial direction. The dark current is observed to improve with an annealing cycle, while the parallel CTE is relatively unaffected and the serial CTE is somewhat degraded. As expected, the radiation tolerance of the p-channel LBNL CCDs is significantly improved over the conventional n-channel CCDs that are currently employed in space-based telescopes such as the Hubble Space Telescope.Comment: 11 pages, 10 figures, submitted to IEEE Transaction

    GALEX UV Spectroscopy and Deep Imaging of LIRGs in the ELAIS S1 field

    Get PDF
    The ELAIS S1 field was observed by GALEX in both its Wide Spectroscopic and Deep Imaging Survey modes. This field was previously observed by the Infrared Space Observatory and we made use of the catalogue of multi-wavelength data published by the ELAIS consortium to select galaxies common to the two samples. Among the 959 objects with GALEX spectroscopy, 88 are present in the ELAIS catalog and 19 are galaxies with an optical spectroscopic redshift. The distribution of redshifts covers the range 0<z<1.60<z<1.6. The selected galaxies have bolometric IR luminosities 10<Log(LIR)<1310<Log(L_{IR})<13 (deduced from the 15μm15 \mu m flux using ISOCAM) which means that we cover a wide range of galaxies from normal to Ultra Luminous IR Galaxies. The mean (σ\sigma) UV luminosity (not corrected for extinction) amounts to Log(λ.L1530)=9.8(0.6)Log(\lambda.L_{1530}) = 9.8 (0.6) L_\sun for the low-z (z0.35z \le 0.35) sample. The UV slope β\beta (assuming fλλβf_\lambda \propto \lambda^\beta) correlates with the GALEX FUV-NUV color if the sample is restricted to galaxies below z<0.1z < 0.1. Taking advantage of the UV and IR data, we estimate the dust attenuation from the IR/UV ratio and compare it to the UV slope β\beta. We find that it is not possible to uniquely estimate the dust attenuation from β\beta for our sample of galaxies. These galaxies are highly extinguished with a median value AFUV=2.7±0.8A_{FUV} = 2.7 \pm 0.8. Once the dust correction applied, the UV- and IR-based SFRs correlate. For the closest galaxy with the best quality spectrum, we see a feature consistent with being produced by a bump near 220nm in the attenuation curve.Comment: This paper has been published as part of the GALEX ApJL Special Issue (ApJ 619, L63

    The Star Formation Rate Function of the Local Universe

    Full text link
    We have derived the bivariate luminosity function for the far ultraviolet (1530Angstroms) and far infrared (60 microns). We used matched GALEX and IRAS data, and redshifts from NED and PSC-z. We have derived a total star formation luminosity function phi(L_{tot}), with L_{tot} = L_{FUV}+L_{FIR}. Using these, we determined the cosmic ``star formation rate'' function and density for the local universe. The total SFR function is fit very well by a log-normal distribution over five decades of luminosity. We find that the bivariate luminosity function phi(L_{FUV},L_{FIR}) shows a bimodal behavior, with L_{FIR} tracking L_{FUV} for L_{TOT}< 10^10 L_sun, and L_{FUV} saturating at 10^10 L_sun, while L_{TOT} L_{FIR} for higher luminosities. We also calculate the SFR density and compare it to other measurements.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    The GALEX UV luminosity function of the cluster of galaxies Abell 1367

    Full text link
    We present the GALEX NUV (2310 A) and FUV (1530 A) galaxy luminosity functions of the nearby cluster of galaxies A1367 in the magnitude range -20.3< M_AB < -13.3. The luminosity functions are consistent with previous (~ 2 mag shallower) estimates based on the FOCA and FAUST experiments, but display a steeper faint-end slope than the GALEX luminosity function for local field galaxies. Using spectro-photometric optical data we select out star-forming systems from quiescent galaxies and study their separate contributions to the cluster luminosity function. We find that the UV luminosity function of cluster star-forming galaxies is consistent with the field. The difference between the cluster and field LF is entirely due to the contribution at low luminosities (M_AB >-16 mag) of non star-forming, early-type galaxies that are significantly over dense in clusters.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in Astrophysical Journal Letter

    Recent star formation in nearby galaxies from GALEX imaging:M101 and M51

    Full text link
    The GALEX (Galaxy Evolution Explorer) Nearby Galaxies Survey is providing deep far-UV and near-UV imaging for a representative sample of galaxies in the local universe. We present early results for M51 and M101, from GALEX UV imaging and SDSS optical data in five bands. The multi-band photometry of compact stellar complexes in M101 is compared to population synthesis models, to derive ages, reddening, reddening-corrected luminosities and current/initial masses. The GALEX UV photometry provides a complete census of young compact complexes on a approximately 160pc scale. A galactocentric gradient of the far-UV - near-UV color indicates younger stellar populations towards the outer parts of the galaxy disks, the effect being more pronounced in M101 than in M51.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Full paper available from http://dolomiti.pha.jhu.edu . Links to full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    UV and FIR selected star-forming galaxies at z=0: differences and overlaps

    Full text link
    We study two samples of local galaxies, one is UV (GALEX) selected and the other FIR (IRAS) selected, to address the question whether UV and FIR surveys see the two sides ('bright' and 'dark') of the star formation of the same population of galaxies or two different populations of star forming galaxies. No significant difference between the Ltot_{tot} (=L60+LFUV=L_{60}+L_{FUV}) luminosity functions of the UV and FIR samples is found. Also, after the correction for the `Malmquist bias' (bias for flux limited samples), the FIR-to-UV ratio v.s. Ltot_{tot} relations of the two samples are consistent with each other. In the range of 9 \la \log(L_{tot}/L_\sun) \la 12, both can be approximated by a simple linear relation of \log (L_{60}/L_{FUV})=\log(L_{tot}/L_\sun)-9.66. These are consistent with the hypothesis that the two samples represent the same population of star forming galaxies, and their well documented differences in Ltot_{tot} and in FIR-to-UV ratio are due only to the selection effect. A comparison between the UV luminosity functions shows marginal evidence for a population of faint UV galaxies missing in the FIR selected sample. The contribution from these 'FIR-quiet' galaxies to the overall UV population is insignificant, given that the K-band luminosity functions (i.e. the stellar mass functions) of the two samples do not show any significant difference.Comment: 21 pages, 7 figures. Accepted by Ap

    Towards a genome-wide transcriptogram: the Saccharomyces cerevisiae case

    Get PDF
    A genome modular classification that associates cellular processes to modules could lead to a method to quantify the differences in gene expression levels in different cellular stages or conditions: the transcriptogram, a powerful tool for assessing cell performance, would be at hand. Here we present a computational method to order genes on a line that clusters strongly interacting genes, defining functional modules associated with gene ontology terms. The starting point is a list of genes and a matrix specifying their interactions, available at large gene interaction databases. Considering the Saccharomyces cerevisiae genome we produced a succession of plots of gene transcription levels for a fermentation process. These plots discriminate the fermentation stage the cell is going through and may be regarded as the first versions of a transcriptogram. This method is useful for extracting information from cell stimuli/responses experiments, and may be applied with diagnostic purposes to different organisms

    GALEX Ultraviolet Photometry of Globular Clusters in M31

    Full text link
    We present ultraviolet photometry for globular clusters (GCs) in M31 from 15 square deg of imaging using the Galaxy Evolution Explorer (GALEX). We detect 200 and 94 GCs with certainty in the near-ultraviolet (NUV; 1750 - 2750 Angstroms) and far-ultraviolet (FUV; 1350 - 1750 Angstroms) bandpasses, respectively. Our rate of detection is about 50% in the NUV and 23% in the FUV, to an approximate limiting V magnitude of 19. Out of six clusters with [Fe/H]>-1 seen in the NUV, none is detected in the FUV bandpass. Furthermore, we find no candidate metal-rich clusters with significant FUV flux, because of the contribution of blue horizontal-branch (HB) stars, such as NGC 6388 and NGC 6441, which are metal-rich Galactic GCs with hot HB stars. We show that our GALEX photometry follows the general color trends established in previous UV studies of GCs in M31 and the Galaxy. Comparing our data with Galactic GCs in the UV and with population synthesis models, we suggest that the age range of M31 and Galactic halo GCs are similar.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    The On-Orbit Performance of the Galaxy Evolution Explorer

    Full text link
    We report the first year on-orbit performance results for the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter modified Ritchey-Chretien telescope with a 1.25 degree field of view, selectable imaging and objective grism spectroscopic modes, and an innovative optical system with a thin-film multilayer dichroic beam splitter that enables simultaneous imaging by a pair of photon counting, microchannel plate, delay line readout detectors. Initial measurements demonstrate that GALEX is performing well, meeting its requirements for resolution, efficiency, astrometry, bandpass definition and survey sensitivity.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issu
    corecore