52 research outputs found

    A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

    Full text link
    The clustered planarity problem (c-planarity) asks whether a hierarchically clustered graph admits a planar drawing such that the clusters can be nicely represented by regions. We introduce the cd-tree data structure and give a new characterization of c-planarity. It leads to efficient algorithms for c-planarity testing in the following cases. (i) Every cluster and every co-cluster (complement of a cluster) has at most two connected components. (ii) Every cluster has at most five outgoing edges. Moreover, the cd-tree reveals interesting connections between c-planarity and planarity with constraints on the order of edges around vertices. On one hand, this gives rise to a bunch of new open problems related to c-planarity, on the other hand it provides a new perspective on previous results.Comment: 17 pages, 2 figure

    Role of oxygen exposure on the differentiation of human induced pluripotent stem cells in 2D and 3D cardiac organoids

    Get PDF
    Introduction Human induced pluripotent stem cells (hiPSC) have the ability to differentiate theoritically into any cell type. The development of organoid systems exhibiting the essential features of human organ such as liver and heart is of high interest. Optimizing the culture conditions to obtain the highest cardiac organoids efficacy is crucial. In fact, cardiac differentiation protocols have been established by essentially focusing on specific growth factors on hiPSC differentiation efficiency. However, the optimal environmental factors such as the optimal oxygen exposure to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Yet, the effect of low oxygen exposure on the molecular and functional maturity of the hiPSC-derived cardiomyocytes remains unexplored. Aims We aimed here at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hiPSCs in 2D monolayer and 3D organoids protocols. Methods hiPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed using qRT-PCR and immunofluorescence. The mitochondrial localization and metabolic properties were evaluated by high-resolution respirometry and mitochondrial staining. The intracellular Ca2+ handling and contractile properties were also monitored using confocal fluorescent microscopy and atomic force microscopy. Results Our results indicated that the 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac organoids containing hiPSC-CMs in LOE exhibited higher cardiac markers expression such as troponin T (TnTc), RyR2, Serca2a, alpha and beta heavy myosin chains. Moreover, we found enhanced contractile force, hypertrophy and steadier SR Ca2+ release reflected by a more regular spontaneous Ca2+ transients associated with a higher maximal amplitude and lower spontaneous Ca2+ events revealing a better SR Ca2+ handling in LOE. Similar beat rate, preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Conclusions Our results brought evidences that LOE is moderately beneficial for the 3D cardiac organoids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.Introduction Human induced pluripotent stem cells (hiPSC) have the ability to differentiate theoritically into any cell type. The development of organoid systems exhibiting the essential features of human organ such as liver and heart is of high interest. Optimizing the culture conditions to obtain the highest cardiac organoids efficacy is crucial. In fact, cardiac differentiation protocols have been established by essentially focusing on specific growth factors on hiPSC differentiation efficiency. However, the optimal environmental factors such as the optimal oxygen exposure to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Yet, the effect of low oxygen exposure on the molecular and functional maturity of the hiPSC-derived cardiomyocytes remains unexplored. Aims We aimed here at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hiPSCs in 2D monolayer and 3D organoids protocols. Methods hiPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed using qRT-PCR and immunofluorescence. The mitochondrial localization and metabolic properties were evaluated by high-resolution respirometry and mitochondrial staining. The intracellular Ca2+ handling and contractile properties were also monitored using confocal fluorescent microscopy and atomic force microscopy. Results Our results indicated that the 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac organoids containing hiPSC-CMs in LOE exhibited higher cardiac markers expression such as troponin T (TnTc), RyR2, Serca2a, alpha and beta heavy myosin chains. Moreover, we found enhanced contractile force, hypertrophy and steadier SR Ca2+ release reflected by a more regular spontaneous Ca2+ transients associated with a higher maximal amplitude and lower spontaneous Ca2+ events revealing a better SR Ca2+ handling in LOE. Similar beat rate, preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Conclusions Our results brought evidences that LOE is moderately beneficial for the 3D cardiac organoids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE

    Spectrum of gluten-related disorders: consensus on new nomenclature and classification

    Get PDF
    A decade ago celiac disease was considered extremely rare outside Europe and, therefore, was almost completely ignored by health care professionals. In only 10 years, key milestones have moved celiac disease from obscurity into the popular spotlight worldwide. Now we are observing another interesting phenomenon that is generating great confusion among health care professionals. The number of individuals embracing a gluten-free diet (GFD) appears much higher than the projected number of celiac disease patients, fueling a global market of gluten-free products approaching $2.5 billion (US) in global sales in 2010. This trend is supported by the notion that, along with celiac disease, other conditions related to the ingestion of gluten have emerged as health care concerns. This review will summarize our current knowledge about the three main forms of gluten reactions: allergic (wheat allergy), autoimmune (celiac disease, dermatitis herpetiformis and gluten ataxia) and possibly immune-mediated (gluten sensitivity), and also outline pathogenic, clinical and epidemiological differences and propose new nomenclature and classifications

    Fulminant Wegener's granulomatosis course with introductory ENT symptoms (case report)

    No full text

    Malé isomerní push-pull chromofory na bázi thienothiofenu s možností ladění (ne)linearit

    No full text
    Fourteen new D-pi-A push-pull chromophores based on two isomeric thienothiophene donors and seven acceptors of various electronic natures have been designed and conveniently synthesized. In contrast to known thienothiophene push-pull molecules, the prepared small chromophores proved to be organic materials with easily tunable thermal, electrochemical and (non)linear optical properties. It has also been shown that small structural variation may result in significantly improved/varied fundamental properties. Very detailed structure-property relationships were elucidated within the systematically developed series of push-pull molecules, which may serve as a useful guide in designing new D-pi-A molecules based on fused thiophene scaffolds.Bylo navrženo a syntetizováno čtrnáct D-pi-A push-pull chromoforů na využivajících jako donorní část dva izomerní thienothiofeny a jako akceptorní část jeden ze sedmi různých substituentů. V kontrastu se známými thienothiofenovými chromofory vykazují tyto připravené malé molekuly snadno laditelné termální, elektrochemické a (ne)lineární optické vlastnosti. Byly studovány vztahy mezi strukturou a vlastnostmi
    corecore