250 research outputs found
Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors
We investigate the current injection into a ballistic conductor under the
space-charge limited regime, when the distribution function of injected
carriers is an arbitrary function of energy F_c(epsilon). The analysis of the
coupled kinetic and Poisson equations shows that the injected current
fluctuations may be essentially suppressed by Coulomb correlations, and the
suppression level is determined by the shape of F_c(epsilon). This is in
contrast to the time-averaged quantities: the mean current and the spatial
profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms
at high biases. The asymptotic high-bias behavior for the energy resolved
shot-noise suppression has been found for an arbitrary (non-Poissonian)
injection, which may suggest a new field of investigation on the optimization
of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde
Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors
We investigate the current injection into a ballistic conductor under the
space-charge limited regime, when the distribution function of injected
carriers is an arbitrary function of energy F_c(epsilon). The analysis of the
coupled kinetic and Poisson equations shows that the injected current
fluctuations may be essentially suppressed by Coulomb correlations, and the
suppression level is determined by the shape of F_c(epsilon). This is in
contrast to the time-averaged quantities: the mean current and the spatial
profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms
at high biases. The asymptotic high-bias behavior for the energy resolved
shot-noise suppression has been found for an arbitrary (non-Poissonian)
injection, which may suggest a new field of investigation on the optimization
of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde
Shot Noise through a Quantum Dot in the Kondo Regime
The shot noise in the current through a quantum dot is calculated as a
function of voltage from the high-voltage, Coulomb blockaded regime to the
low-voltage, Kondo regime. Using several complementary approaches, it is shown
that the zero-frequency shot noise (scaled by the voltage) exhibits a
non-monotonic dependence on voltage, with a peak around the Kondo temperature.
Beyond giving a good estimate of the Kondo temperature, it is shown that the
shot noise yields additional information on the effects of electronic
correlations on the local density of states in the Kondo regime, unaccessible
in traditional transport measurements.Comment: 4 pages, 1 figur
Single donor ionization energies in a nanoscale CMOS channel
One consequence of the continued downwards scaling of transistors is the
reliance on only a few discrete atoms to dope the channel, and random
fluctuations of the number of these dopants is already a major issue in the
microelectonics industry. While single-dopant signatures have been observed at
low temperature, studying the impact of only one dopant up to room temperature
requires extremely small lengths. Here, we show that a single arsenic dopant
dramatically affects the off-state behavior of an advanced microelectronics
field effect transistor (FET) at room temperature. Furthermore, the ionization
energy of this dopant should be profoundly modified by the close proximity of
materials with a different dielectric constant than the host semiconductor. We
measure a strong enhancement, from 54meV to 108meV, of the ionization energy of
an arsenic atom located near the buried oxide. This enhancement is responsible
for the large current below threshold at room temperature and therefore
explains the large variability in these ultra-scaled transistors. The results
also suggest a path to incorporating quantum functionalities into silicon CMOS
devices through manipulation of single donor orbitals
Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor
We report the dispersive readout of the spin state of a double quantum dot
formed at the corner states of a silicon nanowire field-effect transistor. Two
face-to-face top-gate electrodes allow us to independently tune the charge
occupation of the quantum dot system down to the few-electron limit. We measure
the charge stability of the double quantum dot in DC transport as well as
dispersively via in-situ gate-based radio frequency reflectometry, where one
top-gate electrode is connected to a resonator. The latter removes the need for
external charge sensors in quantum computing architectures and provides a
compact way to readout the dispersive shift caused by changes in the quantum
capacitance during interdot charge transitions. Here, we observe Pauli
spin-blockade in the high-frequency response of the circuit at finite magnetic
fields between singlet and triplet states. The blockade is lifted at higher
magnetic fields when intra-dot triplet states become the ground state
configuration. A lineshape analysis of the dispersive phase shift reveals
furthermore an intradot valley-orbit splitting of 145 eV.
Our results open up the possibility to operate compact CMOS technology as a
singlet-triplet qubit and make split-gate silicon nanowire architectures an
ideal candidate for the study of spin dynamics
Mass Production of Silicon MOS-SETs: Can We Live with Nano-Devices’ Variability?
AbstractIt is very important to study variability of nanodevices because the inability to produce large amounts of identical nanostructures is eventually a bottleneck for any application. In fact variability is already a major concern for CMOS circuits. In this work we report on the variability of dozens of silicon single-electron transistors (SETs). At room temperature their variability is compared with the variability of the most advanced CMOS FET i.e. the ultra thin Silicon-on-Insulator Multiple gate FET (UT SOI MuGFET). We found that dopants diffused from Source –Drain into the edge of the undoped channel are the main source of variability. This emphasizes the role of extrinsic factors like the contact junctions for variability of any nanodevice
Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions
We have studied superconductor/normal metal/superconductor (SNS) junctions
consisting of short Au or Cu wires between Nb or Al banks. The Nb based
junctions display inherent electron heating effects induced by the high thermal
resistance of the NS boundaries. The Al based junctions show in addition
subharmonic gap structures in the differential conductance dI/dV and a
pronounced peak in the excess noise at very low voltages V. We suggest that the
noise peak is caused by fluctuations of the supercurrent at the onset of
Josephson coupling between the superconducting banks. At intermediate
temperatures where the supercurrent is suppressed a noise contribution ~1/V
remains, which may be interpreted as shot noise originating from large multiple
charges.Comment: 7 pages, 7 figures, extended versio
Photo--assisted current and shot noise in the fractional quantum Hall effect
The effect of an AC perturbation on the shot noise of a fractional quantum
Hall fluid is studied both in the weak and the strong backscattering regimes.
It is known that the zero-frequency current is linear in the bias voltage,
while the noise derivative exhibits steps as a function of bias. In contrast,
at Laughlin fractions, the backscattering current and the backscattering noise
both exhibit evenly spaced singularities, which are reminiscent of the
tunneling density of states singularities for quasiparticles. The spacing is
determined by the quasiparticle charge and the ratio of the DC bias
with respect to the drive frequency. Photo--assisted transport can thus be
considered as a probe for effective charges at such filling factors, and could
be used in the study of more complicated fractions of the Hall effect. A
non-perturbative method for studying photo--assisted transport at is
developed, using a refermionization procedure.Comment: 14 pages, 6 figure
Towards scalable silicon quantum computing
We report the efforts and challenges dedicated towards building a scalable
quantum computer based on Si spin qubits. We review the advantages of relying
on devices fabricated in a thin film technology as their properties can be in
situ tuned by the back gate voltage, which prefigures tuning capabilities in
scalable qubits architectures
- …