96 research outputs found

    The Economics of Rotational Grazing in the Gulf Coast Region: Costs, Returns, and Labor Considerations, Phase II

    Get PDF
    Profitability and labor associated with rotational grazing at three stocking rates and continuous grazing at a medium stocking rate are compared. On a per-acre basis, profits are lowest for low stocking rate rotational grazing. Labor is greatest on both per-acre and per-cow bases with high stocking rate rotational grazing.Time and Motion Study, Conservation, Louisiana, Cow-Calf, Farm Management, Production Economics, Q16,

    Immunity and field efficacy of type 2-containing polio vaccines after cessation of trivalent oral polio vaccine: A population-based serological study in Pakistan

    Get PDF
    Background: In Pakistan and other countries using oral polio vaccine (OPV), immunity to type 2 poliovirus is now maintained by a single dose of inactivated polio vaccine (IPV) in routine immunization, supplemented in outbreak settings by monovalent OPV type 2 (mOPV2) and IPV. While well-studied in clinical trials, population protection against poliovirus type 2 achieved in routine and outbreak settings is generally unknown.Methods: We conducted two phases of a population-based serological survey of 7940 children aged 6-11 months old, between November 2016 and October 2017 from 13 polio high-risk locations in Pakistan.Results: Type 2 seroprevalence was 50% among children born after trivalent OPV (tOPV) withdrawal (April 2016), with heterogeneity across survey areas. Supplementary immunization activities (SIAs) with mOPV2 followed by IPV improved population immunity, varying from 89% in Pishin to 64% in Killa Abdullah, with little observed marginal benefit of subsequent campaigns. In the other high-risk districts surveyed, a single SIA with IPV was conducted and appeared to improve immunity to 57% in Karachi to 84% in Khyber.Conclusions: Our study documents declining population immunity following trivalent OPV withdrawal in Pakistan, and wide heterogeneity in the population impact of supplementary immunization campaigns. Differences between areas, attributable to vaccination campaign coverage, were far more important for type 2 humoral immunity than the number of vaccination campaigns or vaccines used. This emphasizes the importance of immunization campaign coverage for type 2 outbreak response in the final stages of polio eradication. Given the declining type 2 immunity in new birth cohorts it is also recommended that 2 or more doses of IPV should be introduced in the routine immunization program of Pakistan

    20th to 21st Century Relative Sea and Land Level Changes in Northern California: Tectonic Land Level Changes and their Contribution to Sea-Level Rise, Humboldt Bay Region, Northern California

    Get PDF
    Sea-level changes are modulated in coastal northern California by land-level changes due to the earthquake cycle along the Cascadia subduction zone, the San Andreas plate boundary fault system, and crustal faults. Sea-level rise (SLR) subjects ecological and anthropogenic infrastructure to increased vulnerability to changes in habitat and increased risk for physical damage. The degree to which each of these forcing factors drives this modulation is poorly resolved. We use NOAA tide gage data and ‘campaign’ tide gage deployments, Global Navigation Satellite System (GNSS) data, and National Geodetic Survey (NGS) first-order levelling data to calculate vertical land motion (VLM) rates in coastal northern California. Sea-level observations, highway level surveys, and GNSS data all confirm that land is subsiding in Humboldt Bay, in contrast to Crescent City where the land is rising. Subtracting absolute sea-level rate (~1.99 mm/year) from Crescent City (CC) and North Spit (NS) gage relative sea-level rates reveals that CC is uplifting at ~2.83 mm/year and NS is subsiding at ~3.21mm/year. GNSS vertical deformation reveals similar rates of ~2.60 mm/year of uplift at Crescent City. In coastal northern California, there is an E-W trending variation in vertical land motion that is primarily due to Cascadia megathrust fault seismogenic coupling. This interseismic subsidence also dominates the N-S variation in vertical land motion in most of the study region. There exists a second-order heterogeneous N-S trend in vertical land motion that we associate to crustal fault-related strain. There may be non-tectonic contributions to the observed VLM rates

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
    corecore