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20th to 21st Century Relative Sea and Land Level
Changes in Northern California:

Tectonic Land Level Changes and their
Contribution to Sea-Level Rise, Humboldt Bay

Region, Northern California

Jason R. Patton� ∗1,2, Todd B. Williams2, Jeffrey K. Anderson3, Mark Hemphill-Haley�1, Reed J.
Burgette�4, Ray Weldon II�5, Robert C. McPherson1, Thomas H. Leroy2,6

1Cal Poly Humboldt, Department of Geology, 1 Harpst St., Arcata, CA 95521, USA | 2Cascadia GeoSciences, 380 Beach Dr.,
Arcata, CA 95521, USA | 3Northern Hydrology and Engineering, P.O. Box 2515, McKinleyville, CA 95519, USA | 4Oregon

Department of Geology and Mineral Industries, 800 NE Oregon Street, Suite 965, Portland, OR 97232, USA | 5University of
Oregon, Department of Earth Sciences, 1272 University of Oregon, Eugene, OR 97403 | 6Pacific Watershed Associates,

1652 Holly Dr, McKinleyville, CA 95519, USA

Abstract Sea-level changes are modulated in coastal northern California by land-level
changes due to the earthquake cycle along the Cascadia subduction zone, the San Andreas plate
boundary fault system, and crustal faults. Sea-level rise (SLR) subjects ecological and anthro-
pogenic infrastructure to increased vulnerability to changes in habitat and increased risk for phys-
ical damage. The degree to which each of these forcing factors drives this modulation is poorly
resolved. We use NOAA tide gage data and ‘campaign’ tide gage deployments, Global Naviga-
tion Satellite System (GNSS) data, and National Geodetic Survey (NGS) first-order levelling data to
calculate vertical land motion (VLM) rates in coastal northern California. Sea-level observations,
highway level surveys, and GNSS data all confirm that land is subsiding in Humboldt Bay, in con-
trast to Crescent City where the land is rising. Subtracting absolute sea-level rate (∼1.99mm/year)
from Crescent City (CC) and North Spit (NS) gage relative sea-level rates reveals that CC is uplift-
ing at ∼2.83 mm/year and NS is subsiding at ∼3.21mm/year. GNSS vertical deformation reveals
similar rates of ∼2.60 mm/year of uplift at Crescent City. In coastal northern California, there is an
E-W trending variation in vertical land motion that is primarily due to Cascadia megathrust fault
seismogenic coupling. This interseismic subsidence also dominates the N-S variation in vertical
land motion in most of the study region. There exists a second-order heterogeneous N-S trend in
vertical land motion that we associate to crustal fault-related strain. There may be non-tectonic
contributions to the observed VLM rates.

1 Introduction

Since the Last Glacial Maximum (approximately 22
thousand years ago), global mean sea level (GMSL)
has risen ∼120 meters (Lambeck and Chappell, 2001;
Peltier, 2002; Peltier and Fairbanks, 2006). Present-day
rise is attributed to natural and anthropogenic forc-
ings contributing to melting ice, humanmanagement
of surface and ground water, and changes in sea
water temperature and salinity (Cazenave and Llovel,
2010). Following 1850, the anthropogenic forcing of
Earth’s climate has exerted a first order control to sea
level rise (Jevrejeva et al., 2009; Stammer et al., 2013;
Church et al., 2013). As water and ice masses spa-
tially redistribute, Earth’s crust and mantle adjust to

∗� Jason.Patton@humboldt.edu

these changes; these elastic and viscoelastic isostatic
adjustments further contribute to relative sea-level
(RSL) with a process called the Glacial Isostatic Ad-
justment (GIA; Peltier, 1976; Clark et al., 1978; Gehrels,
2010; King et al., 2012).

For the period of 1925-2006, sea-level along the
USA northwestern coast, from northern California to
Washington state (herein after called Pacific North-
west), is estimated to be 2.28 ± 0.20 millimeters per
year (mm/year; Burgette et al., 2009). Montillet et al.
(2018) present a northeast Pacific SLR rate of 1.99 ±
0.16 mm/year. Based on satellite altimetry, for the
period of 1993-2007, global estimates of sea level
rise range up to 3.4 ± 0.04 mm/year (Cazenave and
Llovel, 2010; Nerem et al., 2010). He et al. (2022)
present a summary of geocentric satellite derived
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rates that range from 1.5 to 1.9 mm/year. However
sea-level rise at theHumboldt BayNorth Spit (NS) tide
gage is much greater than any other gage in the Pa-
cific Northwest (Zervas, 2009). National Oceanic and
Atmospheric Administration Center for Operational
Oceanographic Products and Services (NOAACo-Ops)
reports an observed sea-level rate of 4.73mm/year at
the NS tide gage in Humboldt Bay (Zervas et al., 2013).
At the next nearest NOAA continuous operating tide
gage in Crescent City (CC), California, sea-level is ob-
served to be lowering at 0.65 mm/year (Zervas et al.,
2013), the result of upwards vertical land motion in
Crescent City. The NS gage records led some previ-
ous researchers to discard these data as apparently
anomalous (since they were not similar to the rates at
CC), possibly due to localized site settlement (Mitchell
et al., 1994; Verdonck, 2006).

In 2010 we gathered over thirty federal, state, and
local agencies, academics, non-governmental organi-
zations, and private industry to discuss the factors
that may control sea-level rise in coastal northern
California. One focus was the difference in sense
of motion for SLR rates between the North Spit and
the Crescent City tide gages and we suggested to the
workshop participants that this difference was due to
the tectonics of the Cascadia subduction zone. The
consensus from this workshop was that there was a
need to evaluate the tectonic contribution to sea-level
rise for coastal northern California.

After the 2010workshop, others agreedwith our in-
terpretation that the high rate of sea-level rise at the
North Spit tide gage was due to the tectonics related
to the CSZ (Komar et al., 2011). In this paper we ad-
dress this question by analyzing GNSS, leveling, and
other tide gage data.

When the NS tide gage was installed, 11 tidal
benchmarks and associated temporary gaging sta-
tions were deployed from 1977 to 1980. Utilizing
a subset of these initial observation points, we an-
alyze contemporary sea-level observations in Hum-
boldt Bay to investigate relative sea-level rise over lo-
cal to regional scales. We also use first-order leveling
data collected by the NGS to determine vertical land
motion rates for the second half of the twentieth cen-
tury (Burgette et al., 2012). We also incorporate GNSS
observations into our analyses of vertical landmotion
for the past two decades (Murray and Svarc, 2017).

TheGorda plate subducts beneath theNorth Amer-
ica plate at about 36 mm/year to form the Cascadia
subduction zone (CSZ) megathrust fault (McCaffrey
et al., 2007, Figure 1). An excellent review of the hori-
zontal GNSS data, which may help some learn about
the horizontal plate tectonics, is presented in McKen-
zie and Furlong (2021) and included references. How-
ever, this convergence rate is limited to global plate
circuit rate, locally controlled by magnetic anomalies
observed in the Gorda and Juan de Fuca crust (Wil-
son, 2002). When the fault is seismogenically locked,
the plate deforms elastically, causing vertical land
motion (Mitchell et al., 1994; Flück et al., 1997; Wang
et al., 2003). Regions directly above the locked area
of the fault generally subside during the interseismic

period and regions landward of the locked region of
the fault generally uplift during the interseismic pe-
riod, as observed in Japan (Hyndman and Wang, 1995;
Loveless and Meade, 2010) and elsewhere (Wang et al.,
2001; Feng et al., 2012). The interseismic and coseis-
mic VLM trends are dependent upon their relative
timing within the earthquake cycle and the tempo-
ral extent to which the viscous mantle responds to
the earthquake cycle, so coseismic motion may not
be a perfect inversion of interseismic motion (Wang
and Tréhu, 2016). The spatial variation in relative sea-
level change, the sum of the vertical change based on
sea-level rise and vertical land-level changes (Nelson
et al., 1996), has been used to quantify vertical tec-
tonic deformation associated with the CSZ in Oregon
(Mitchell et al., 1994; Burgette et al., 2009; Zervas et al.,
2013) and along the entire margin (Verdonck, 2006).
Understanding this ongoing tectonic deformation in
northern California will allow us to quantify and pre-
dict future sea-level trends. The North America plate
crustal faults that may contribute to ongoing defor-
mation in the Mendocino triple junction region are
presented in Figure 2.
We utilize tide gage, benchmark releveling, and

GNSS observations to characterize the interseismic
plate tectonic land-level change associated with the
southern CSZ (Figure 3). This paper includes a uni-
fied geodetic dataset for this region that uses three
independent measures of vertical land motion. Re-
sults from this study will provide fundamental sea-
level rise data for making management decisions as
they apply to coastal landscapes and the species and
ecosystems that inhabit the tidal prism, which are
the most vulnerable to future sea-level rise (Nicholls
and Cazenave, 2010; Nicholls, 2011). Quantifying fu-
ture relative sea-level change is the first step in plan-
ning strategies for coastal ecosystems (Church et al.,
2011; Horton et al., 2014). Preliminary results from
this study were presented in a non-peer reviewed an-
nual and final report to the U.S. Fish andWildlife (Pat-
ton et al., 2014, 2017) however results presented in
this paper include additional efforts to account for
updated SLR estimates (e.g., Montillet et al., 2018; He
et al., 2022), VLM calculations, and updated GNSS
rates.

2 Methods

We utilize water level observations in Humboldt Bay
as collected by the NOAA (1977-1987), Towill Engi-
neering on the behalf of the US Army Corps of En-
gineers San Francisco Office (2010), and Northern
Hydrology and Engineering (2008, 2012-13, 2016) to
evaluate local trends in sea level compared to Cres-
cent City, the longest operating tide gage in the region
(Figure 3). We use available first-order leveling data
collected by the NGS predominantly along the route
of Highway 101 between Crescent City south through
and past the Humboldt Bay region (Figure 3). We also
use GNSS observations from continuous GNSS sites
operated by the National Science Foundation pro-
gram, EarthScope, and theUSGS (Figure 3). GNSS rate
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USGS Quaternary Active Fault and Fold Database. Fault
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Mountain/Big Lagoon; CSZ, Cascadia subduction zone; ER,
Eaton Roughs; FeF, Ferndale; FrF, Freshwater; GkF Gar-
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Garlock; LSF, Little Salmon; MCF, Mendocino Canyon; MaF
Maacama; MeF Mendocino; MRFZ, Mad River; PF, Petrolia;
PSGF, Point St. George, RF, Russ in red; TBF, Table Bluff;
TF, Trinidad; YF, Yager. Arrows designate direction of fault
motion.

data are relative to the ITRF2014 reference frame. We
combine all 3 independent geodetic site data to es-
timate decadal scale rates of VLM around the Hum-
boldt Bay region. We also apply a regional estimate of
GIA to these geodetic site data to account for ongoing
changes in VLM following the last glacial maximum
(Engelhart et al., 2015). We also evaluate all geodetic
stations for the potential of instability caused by the
materials the stations are installed in or on, which in-
cludes a qualitative assessment of the mapped geo-
logical units.

2.1 Sea-Level Analysis

Weanalyzemeanmonthlywater level observations at
tide stations for CC, Trinidad (TR), and five locations
in Humboldt Bay (North Spit, NS; Mad River Slough,
MRS; Samoa SO; Fields Landing, FL; Hookton Slough,
HS) to estimate the RSL and VLM rates at these sites
(Figure 3). We use available data directly from the
NOAA websites for all tide stations through Decem-
ber 2021. For the HS site, we installed a temporary
tide gage in 2012. For the MRS site, we installed a
temporary gage in 2008 and 2016. For the SO and
FL gages, we use survey and water level observation
data from observations made in 2010 and 2011 by
Towill Engineering on the behalf of USACE.
To determine RSL and VLM rate estimates for all

stations we follow the general approach of Burgette
et al. (2009). For the longer record stations (CC, NS
and TR) we first remove the mean monthly seasonal
cycle from the observations. For stations with ad-
equate data overlap we difference the observations
between stations. Differencing the observations re-
moves the regional oceanographic noise common to
both stations and the trend of the differences repre-
sents the relative crustal uplift rate between stations
Burgette et al. (2009). Relative rate estimates at each
station and the station differences were determined
from the slope of a least squares linear regression.
We determined uncertainty in the slope estimates as
the standard error from the regression adjusted for
first-order autocorrelation using the Hildreth-Lu pro-
cedure.
To refine the relative rate estimates we combine

the individual station rates with the rate differences
between stations in a weighted least squares adjust-
ment (Ghilani, 2010). The weights (w) were deter-
mined as w = σt

−2, where σt is the standard error of
the rates, and we selected the standard error of the
regression or the standard error from the Hildreth-
Lu procedure based on the Durbin -Watson test (p <
0.05).
To determine VLM rates at each stationwe subtract

the regional (or absolute) sea level (ReSL) rate (1.99 ±
0.16 mm/year) ofMontillet et al. (2018) from each sta-
tion’s RSL rate determined by the least squares ad-
justment. The ReSL standard error of 0.16 mm/year
was estimated from the absolute sea level rates re-
ported in Table 3 (Montillet et al., 2018, p. 1206).

2.2 Benchmark Level Analysis

We analyze the available first-order leveling data col-
lected by the NGS, which were observed in 1931,
1945, 1968, and 1988. The leveling data correspond
to surveys of benchmarks located along highways
that traverse different geology types (Quaternary
sediment, Tertiary rocks, and Cretaceous-Tertiary
Franciscan mélange rocks). We analyze the unad-
justed line data, with orthometric, rod, level, tem-
perature, astronomical, refraction, andmagnetic cor-
rections applied by the NGS as appropriate (United
States. Federal Geodetic Control Committee, 1984). The
1931 and 1945 data pre-date the installation of the
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NS tide gage. Surveyed benchmarks are generally
confined to the route of Highway 101 between Cres-
cent City south through the Humboldt Bay region.
We also analyze data from a spur route between
Highway 101 and the NS tide gage that was first ob-
served in 1945 as well as the regional lines observed
in 1968 and 1988 (Figure 3). We calculate tilt rates
relative to Benchmark 60 in downtown Eureka, which
has a long history and appears to be locally stable.
Run distance-dependent one sigma errors are propa-
gated following the procedure of Burgette et al. (2009).

2.3 GNSS Analysis

Continuously operating GNSS (CGNSS) position data
were sourced from the US Geological Survey North-
ern California and Pacific Northwest continuous
GNSS databases. CGNSS stations operated by the
National Science Foundation’s EarthScope (UNAVCO)
and PBO project provide an independent data set
to determine rates of VLM (Figure 3). We use the
USGS published motion rates for continuously op-
erating GNSS stations in the northern California re-
gion surrounding Humboldt Bay. We also include
position rate data for campaign GNSS (cGNSS) sites
but exclude sites with uncertainties larger than 1
mm/year, which are due to short observation peri-
ods. We query rates of motion in north, south, and
vertical directions relative to the International Ter-
restrial Reference System 2014 (ITRF2014) reference
frame. Static offsets due to coseismic motion are de-
termined by the USGS and removed from the trend
analysis, which modifies the long-term calculated ve-
locities (Murray and Svarc, 2017). These static offsets,
which also include non-tectonic changes in position,
are published by the USGS on the database websites.
We use these published velocities for our analyses.

2.4 GIA Model

We incorporateGIAmodel results from Engelhart et al.
(2015) to estimate this contribution to the VLM ob-
served at the geodetic sites. We use GIA data from
Engelhart et al. (2015). The GIA rates for this study
range from 1.21 to 1.60 mm/year. We use the square
root of the sum of the squares to propagate GIA un-
certainty into our results.

2.5 Reference frames

Tide gage data are relative to the station datum
(STND) at each tide gage. The STND is unique for each
station. We assume that the tidal STND is stable rela-
tive to the gage as is reported by NOAA for these sta-
tions. Level survey data are also relative to the sur-
vey marks surveyed. The GNSS data are relative to
the ITRF2014 reference frame. These three data sets
are each independent measures of VLM so are not in
a shared reference frame.

3 Results

3.1 Water Level Analyses

Table 1 – Observed and adjusted tide station relative sea
level rates and differenced relative rate between stations.

Tide
Station*

N† RSL§ or Δ#

(mm a-1)
SE¥

(mm a-1)
AC‡ (ρ)

SEAC** or

SE for WLSA††

(mm a-1)

RSLADJ
§§ or

ΔADJ
##

(mm a-1)

SEADJ
¥¥

(mm a-1)

CC 1001 -0.82 0.09 0.46 0.14 -0.84 0.14
TR 129 5.59 1.51 0.60 3.12 2.86 1.10
MRS 10 2.96 1.08 -0.26 1.08 2.53 0.41
SO 12 5.10 1.51 0.46 1.71 3.92 0.35
NS 523 4.89 0.23 0.53 0.42 5.20 0.17
FL 5 3.88 2.44 0.05 2.44 4.65 0.33
HS 21 7.13 1.15 0.39 1.49 6.64 0.65
CC-TR 129 -4.01 0.75 0.53 1.39 -3.69 1.09
CC-MRS 10 -2.99 0.71 0.33 0.75 -3.37 0.40
CC-SO 12 -5.75 1.13 0.76 1.18 -4.76 0.32
CC-NS 522 -6.05 0.06 0.55 0.12 -6.04 0.11
CC-FL 5 -5.19 0.84 -0.75 0.84 -5.49 0.31
CC-HS 21 -7.15 0.70 0.59 0.96 -7.48 0.64
NS-TR 99 4.38 1.18 0.52 2.14 2.34 1.10
NS-MRS 10 2.60 0.51 0.00 0.51 2.67 0.40
NS-SO 10 0.25 1.14 0.72 0.53 1.28 0.31
NS-FL 4 1.29 0.42 -0.65 0.42 0.55 0.30
NS-HS 18 -1.60 0.79 0.40 1.04 -1.45 0.64
SO-FL 5 -0.91 0.20 -0.04 0.20 -0.73 0.19
* Tide Station Abbreviations: Crescent City (CC), Trinidad (TR), Mad River Slough (MRS),
Samoa (SO), North Spit (NS), Fields Landing (FL), Hookton Slough (HS)
† Number of observations
§ Relative sea level rate from linear regression, millimeters per year
# Differenced relative rate between stations from linear regression
¥ Estimated standard error from linear regression
‡ Autocorrelation (ρ = AC parameter)
** Standard error adjusted for autocorrelation
†† Weighted least squares adjustment; SE or SEAC used in WLSA based on Durbin
Watson test (p <0.05)
§§ Relative sea level rate from WLSA
## Differenced relative rate from WLSA
¥¥ Standard error from WLSA

Table 1 summarizes the rate trend statistics for CC,
TR, MRS, SO, NS, FL, and HS. The table also includes
the relative rates by differencing all tide gage rates
with the CC rates (e.g., CC-TR). Data in the column
entitled RSL are from a linear regression and data in
the column entitled RSLADJ are from a weighted least
squares analysis (WLSA) of these data.

The RSL rates and associated standard errors (SE)
in mm/year from the linear regression, the SE ad-
justed for autocorrelation, and the adjusted RSL
(RSLADJ) rates and SE from the weighted least squares
adjustment (WLSA) for the seven tide gage stations
(CC, TR, MRS, SO, NS, FL, and HS) are summarized in
Table 1 and Figure 4. Estimated tide gage station VLM
rates and SE (Table 2) were determined by differenc-
ing the RSLADJ rate from the absolute sea level rate
of 1.99 mm/year (Montillet et al., 2018). GIA adjusted
VLM (VLMGIA) rates and SE (Table 2) were estimated by
differencing the tide gage VLM and GIA rates of Engel-
hart et al. (2015).

Rates of RSLADJ for the tide gage stations (in
mm/year) are CC (-0.84), TR (2.86), MRS (2.53), SO
(3.92), NS (5.20), FL (4.65), and HS (6.64). Estimated
rates (in mm/year) of VLM at the station sites are CC
(2.83), TR (-0.87), MRS (-0.54), SO (-1.93), NS (-3.21), FL
(-2.66), and HS (-4.65). The VLMGIA estimated rates (in
mm/year) at the sites are CC (1.55), TR (-2.29), MRS
(-2.01), SO (-3.42), NS (-4.71), FL (-4.18), and HS (-6.18).

We compared our estimated tide gage VLM with
those presented in Montillet et al. (2018) and He et al.
(2022) in Table 3. Montillet et al. (2018) linearly inter-
polated VLM rates between geodetic stations for CC
and NS, and He et al. (2022) present a VLM rate for TR.
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Figure 4 – Tide gage results showing sea-level rise rates. (A) National Oceanographic Atmospheric Administration data for
each tide gage are presented. Solid lines are linear regression fits. Dashed blue lines are weighted least squares regression
rates. CC – Crescent City; TR – Trinidad; MRS – Mad River Slough; SO – Samoa; NS – North Spit; FL – Fields Landing; HS –
Hookton Slough. Sites are organized north (top) to south (bottom). (B) CC data are plotted for reference as plotted in A. The
other tide station data are plotted as the difference between each site and CC, showing how these locations move vertically
relative to CC. Note the increase in subsidence from north to south.

Table 2 – Tide station relative sea level and vertical motion
rates.

Tide
Station*

RSLADJ
†

(mm a-1)

SEADJ
§ for

RSLADJ
(mm a-1)

VLM#

(mm a-1)

SE# for
VLM

(mm a-1)

VLMGIA
‡

(mm a-1)
SEGIA

¥

(mm-1)

CC -0.84 0.14 2.83 0.21 1.55 0.35
TR 2.86 1.10 -0.87 1.11 -2.29 1.13
MRS 2.53 0.41 -0.54 0.44 -2.01 0.47
SO 3.92 0.35 -1.93 0.38 -3.42 0.41
NS 5.20 0.17 -3.21 0.23 -4.71 0.28
FL 4.65 0.33 -2.66 0.37 -4.18 0.40
HS 6.64 0.65 -4.65 0.67 -6.18 0.69
* Tide Station Abbreviations: Crescent City (CC), Trinidad (TR), Mad River Slough (MRS),
Samoa (SO), North Spit (NS), Fields Landing (FL), Hookton Slough (HS)
† Relative sea level rate from Weighted least squares adjustment (WLSA)
§ Standard error from Weighted least squares adjustment (WLSA)
# Vertical land motion and standard error; VLM = RSLADJ - ReSL; ReSL rate of
1.99 mm/yr ± 0.16 mm/yr (Montillet et al., 2018); ReSL = Regional sea level
‡ VLM rate adjusted for GIA (Engelhart et al., 2015)
¥ Standard error (SEGIA) for VLMGIA

3.2 Benchmark Level Analysis

Repeated first-order leveling along coastal highway
routes provides spatially dense estimates of uplift/-
subsidence rate variation. In the Humboldt Bay area,
levelingwas completed between theNS tide gage and
the main leveling route along Highway 101 in 1945,
1967, and 1988. Relative uplift rates calculated from
these epochs are all consistent within estimated ran-
dom error, showing subsidence of North Spit at ap-
proximately 3 mm/year relative to Arcata, and 1.5–2
mm/year relative to benchmarks in downtown Eu-
reka (Benchmark 60; Burgette et al., 2012). VLM rates
for the 1988-1967 period are listed in Table SI-1 (Sup-
porting Information).

Themain coastal routewas surveyed in 1930–1932,

Table 3 – Comparison between VLM rates in Table 2 and
VLM rates interpolated byMontillet et al. (2018) and He et al.
(2022).

Tide
Station*

VLM†

(mm a-1)
SE† for VLM
(mm a-1)

VLMM
§

(mm a-1)
SD# for VLM
(mm a-1)

Note

CC 2.83 0.35 2.46 0.29 Interpolated
TR -0.87 1.13 -0.85 0.27 PANGA
MRS -0.54 0.47
SO -1.93 0.41
NS -3.21 0.28 -1.15 0.22 Interpolated
FL -2.66 0.40
HS -4.65 0.69
* Tide Station Abbreviations: Crescent City (CC), Trinidad (TR),
Mad River Slough (MRS), Samoa (SO), North Spit (NS),
Fields Landing (FL), Hookton Slough (HS)
† Tide station vertical land motion (VLM) and standard error (SE),
see Table 2; VLM = RSLADJ - ReSL; ReSL rate of 1.99 mm/yr ± 0.16 mm/yr
(Montillet et al., 2018); ReSL = Regional sea level
§ Vertical land motion rate (VLM) linearly interpolated between geodetic sites
(Montillet et al., 2018) or published by PANGA (see note)
# Standard deviation (SD) from Montillet et al. (2018) or
PANGA in He et al. (2022) (see note)

then repeated in 1967 and 1988. The uplift rate of
the primary (nearest) benchmark at CC relative to
the NS primary (nearest) benchmark is 5.61 ± 1.04
mm/year based on differenced 1988 and 1967 sur-
veys (Table 4). This rate estimate overlaps with the
6.04± 0.31mm/year relative uplift of the CC tide gage
relative to NS determined fromdifferencedwater lev-
els observed above. In contrast, rates of motion be-
tween CC and benchmarks in Eureka calculated with
the 1930 leveling data and either more recent line
show amismatch of 2.8 to 4.0mm/year despite lower
levels of predicted uncertainty. This comparison re-
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Table 4 – Land-level misfit between tide gage and nearest surveymark and GPS sites, including GIA adjustment.

Tide
Station*

VLMTG
†

(mm a-1)
SETG

†

(mm a-1)
Surveymark§

VLMSM
#

(mm a-1)
SESM

#

(mm a-1)
Dist‡

(km)
GNSS

Station¥
VLMGNSS**
(mm a-1)

SEGNSS**
(mm a-1)

Dist†

(km)

VLMSM
§§

misfit
(mm a-1)

SESM
##

misfit
(mm a-1)

VLMGNSS
‡‡

misfit
(mm a-1)

SEGNSS
¥¥

misfit
(mm a-11)

CC 1.55 0.35 LV0110 1.24 0.93 0.09 CACC 1.32 0.62 0.16 0.31 0.99 0.23 0.71
TR -2.29 1.13 LV0154 -0.42 0.59 0.99 TRND -1.65 0.42 0.47 -1.87 1.27 -0.64 1.21
MRS -2.01 0.47 LV0344 -3.05 0.43 0.00 NA NA NA NA 1.04 0.64 NA NA
SO -3.42 0.41 LV0352 -3.64 0.40 0.22 NA NA NA NA 0.22 0.57 NA NA
NS -4.71 0.28 LV0361 -4.37 0.46 0.00 NA NA NA NA -0.34 0.54 NA NA
FL -4.18 0.40 LV0263 -3.46 0.47 0.70 S153 -4.08 2.15 2.09 -0.72 0.62 -0.10 2.19
HS -6.18 0.69 LV0259 -5.56 0.49 1.70 P162 -2.47 0.52 1.52 -0.62 0.85 -3.71 0.86
* Tide Station Abbreviations: Crescent City (CC), Trinidad (TR), Mad River Slough (MRS), Samoa (SO), North Spit (NS), Fields Landing (FL), Hookton Slough (HS)
† Tide station vertical land motion (VLM) and standard error (SE), see Table 2; VLM = RSLADJ - ReSL; ReSL rate of 1.99 mm/yr ± 0.16 mm/yr (Montillet et al., 2018);
ReSL = Regional sea level
§ Surveymark identification number
# Surveymark vertical land motion rate (VLM) and standard error (SE)
‡ horizontal distance between tide station and surveymark, kilometers
GNSS station nearest tide station, not applicable (NA) if there is no GNSS station within 2 kilometers
** GNSS vertical land motion rate (VLM) and standard error (SE), millimeters per year
†† horizontal distance between tide station and GNSS station, kilometers
§§ VLM difference between tide station and nearest surveymark, millimeters per year
## SE for VLM difference between tide station and nearest surveymark, millimeters per year
‡‡ VLM difference between tide station and nearest GNSS station, millimeters per year
¥¥ SE for VLM difference between tide station and nearest GNSS station, millimeters per year

lies on the relative uplift rate between the NS primary
benchmark and Benchmark 60 in Eureka, estimated
from the 1988–67 epoch difference, to estimate the
portion of NS to CC route not observed in 1933. How-
ever, the rates between Eureka and North Spit are
consistent over three epochs from 1945 to 1988, so
we interpret that the discrepancy in rates involving
the 1930s data results from systematic errors present
in the earliest leveling epoch. Based on the agree-
ment with the relative tide gage based VLM, we use
rates from differenced 1988 and 1967 leveling as the
best estimate of crustal deformation.

3.3 GNSS Analysis

GNSS motion rate analysis results are presented in
Table SI-2 (Supporting Information). Site location,
observation period, and motion rates are listed for
each site relative to the ITRF2014 reference frame.
GNSS sites have different observation periods, with
the longest record for GNSS site TRND with a time
span from 1999-2022. In general, continuous GNSS
sites have uncertainties much lower than for cam-
paign GNSS observations. Table SI-3 (Supporting In-
formation) includes information about the static off-
sets used by the USGS to correct land motion rates
for earthquakes, antenna changes, and other factors
(Murray and Svarc, 2017). These data are published by
the USGS for each GNSS station. We present the sta-
bility analysis results for all geodetic stations in Sup-
porting Information SI-4.

We compare vertical rates of motion derived from
land-level surveys with those derived from GNSS
observations and for our tide gage analyses (Ta-
ble 4). Uplift rates estimated from 1988-1967 level-
ing epochs are also generally consistent, in a regional
sense, with the GNSS results and the relative tidal
rates between NS and CC as discussed in the previ-
ous section. In general, these independent sites are,
within uncertainty, the same rate (Table 4).

Across the region, Humboldt Bay is subsiding while
the surrounding areas are not (Figure 5). Rates of
VLM are estimated at -4.65 mm/year in south Hum-

boldt Bay, and 2.83 mm/year in Crescent City (Ta-
ble 2). South of Humboldt Bay there is uplift like the
uplift rates north of Humboldt Bay. In Figure 5 we
plot outliers without color because these sites (e.g.,
cGNSS) have large uncertainty an order of magnitude
greater than the other sites (e.g., CGNSS), or are not
near highway 101, and somake it confusing to visual-
ize the regional pattern of VLM. We include all geode-
tic sites in Figure SI-5 (Supporting Information).

3.4 Spatial Trends

We present a summary of VLM rates plotted relative
to latitude and distance to the CSZ trench, in kilome-
ters (Figure 6). A high-resolution version of Figure 6 is
included in Figure SI-6 (Supporting Information). We
use a line that represents the subduction zone trench
to calculate the distance between each geodetic sta-
tion to this trench line using the ESRI ArcMap tool
“NEAR”. These GIS data are listed in the Data Availabil-
ity section. The longitudinal trends in VLM are plot-
ted in Figure 6A. In the Humboldt Bay region, obser-
vation sites to the west are subsiding and observa-
tion sites to the east are rising. The same is true for
the sites in the lower Eel River Valley, which is slightly
closer to the trench but also closer to the southern
edge of the CSZ megathrust fault locked zone (Pollitz
and Evans, 2017). In the Crescent City area observa-
tion sites are rising. In southernHumboldt and north-
ern Mendocino counties, observation sites are rising.
Some GNSS geodetic sites that appear to be outliers
are labeled. Sites with a large uncertainty (such as
cGNSS sites) are plotted without error bars. Figure
SI-6 (Supporting Information) includes the same plot
as Figure 6, but all data are displayed with error bars.

The Latitudinal trends in VLM are plotted in Fig-
ure 6B. There is a pronounced region of subsidence in
the Humboldt Bay and Eel River Valley regions. Sub-
sidence rates decrease slowly to the north and more
rapidly to the south. The latitudinal variation in VLM
rates is heterogeneous and appears to have discrete
offsets in several locations. These locations are col-
located with crustal faults in the region. Sites near
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Figure 6 – Spatial Variation in Vertical Land Motion. Summary of vertical land-level change in the coastal northernmost
California plotted for GNSS, tide gage, and benchmark level sites. Standard error uncertainty is plotted for data used in
these analyses. Sites with large uncertainty and sites that are not very close to Highway 101 are plotted without error bars.
(A) VLM rates (mm/year) plotted relative to horizontal distance (in kilometers) to the CSZ trench, west to east. Only coastal
GNSS data are included. Some geodetic sites are labeled. (B) VLM rates (mm/year) plotted relative to distance in kilometers
(UTM NAD83 Zone 10 N), south to north. A high-resolution version of this figure is presented in Figure SI-6 (Supporting
Information).
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Mad River and Klamath River bridges are subsiding
at larger rates than the surrounding sites.

4 Discussion

The subsidence originally interpreted to be locally ob-
served at NS is now found to extend over at least
a 100 km2 area in the Humboldt Bay and Eel River
delta regions (Figures 5 and 6). There is a measured
spatial variation in vertical land level motion rates
across coastal northern California that is contribut-
ing to relative sea level observations in the region.
This variation is resolved using three independent
data sets. Repeated benchmark survey derived up-
lift rates from 1967-1988 generally agree to within 1
mm/year of tide gage (1977-2012) and GNSS (1999-
2019/21/22) derived rates for permanent and tempo-
rary sites within Humboldt Bay. Potential sources for
the variation include sediment compaction, ground
water extraction, glacial isostatic elevation change,
and tectonicmotion. The results from this study have
already been incorporated into sea level rise planning
in the county of Humboldt, the cities of Arcata and Eu-
reka, and the communities of Fairhaven, Fields Land-
ing, and King Salmon (Laird, 2019).

4.1 Sources for Vertical Land Motion

There are several possible sources for the VLM rates
observed in this study, including: subsidence from
sediment compaction (Allen, 2000); ground water ex-
traction (Ireland et al., 1984), glacial isostatic eleva-
tion change (Shennan et al., 2006); geothermal fac-
tors (Massonnet et al., 1997); redistribution of litho-
spheric mantle (Levandowski and Jones, 2015), inter-
seismic lithospheric deformation associated with the
CSZ, and interseismic deformation associated with
crustal faults.
Sediment auto-compaction is a “group of inter-

linked processes” that cause a sedimentary strati-
graphic column to decrease in volume, due to a va-
riety of mechanical and biogeochemical processes
(Allen, 2000). The amount of compaction can be es-
timated in several ways, with the magnitude typi-
cally presented as a percentage of the original sed-
iment thickness (Bird et al., 2004). Sediment auto-
compaction and sea-level rise are both considered re-
sponsible for how salt marshes build upward, pro-
viding accommodation space (Allen, 2000). Differ-
ent earth materials have different potential for com-
paction rates (Stouthamer and van Asselen, 2015). Var-
ious processes and factors that contribute to com-
paction rates include consolidation (extraction of wa-
ter from pore space in the sediment) and creep (the
viscousmovement of sediment and sedimentary par-
ticles). Brain (2015) reviews these factors and how
they contribute to sediment compaction observed in
coastal settings. Given that the results presented in
this study span sites that are located in both sedi-
mentary settings (tide gage and benchmark sites), as
well as bedrock settings (GNSS and benchmark sites),
sediment auto-compaction may not be a first order

control for the variation in VLM rates presented here
(see SI-4 in Supporting Information for more discus-
sion about how geology type may influence our ob-
servations).

Land subsidence as a result of groundwater extrac-
tion has been observed in the central valley of Cali-
fornia for decades (Ireland et al., 1984) and is primar-
ily caused by the collapse of pores as the water is re-
moved and pumped to the surface for agricultural ac-
tivities (Galloway et al., 1998; Farr and Liu, 2014). For
the same reasons we present above, ground water
extraction is probably not a first order control for the
variation in VLM rates in our data sets. Though we
cannot rule this out as a secondary factor.

Glacial cycles are a major component of the hydro-
logic cycle at the time scales of centuries to millen-
nia as these cycles lead to the largest redistribution
of mass across the globe, in addition to a major con-
tributor to sea level change (Shackleton, 1987; Milne,
2015). This redistribution of mass leads to increased
mass in regions of ice cover (generally in continental
settings) during glacial periods and concomitant re-
duction of mass in oceanic regions (where the major-
ity of water for the ice comes from). This redistribu-
tion, knownas glacial isostatic adjustment (GIA), leads
to subsidence in ice-covered regions during glacial
periods, and uplift in these same regions during inter-
glacial periods (Peltier, 1990, 1999). The contribution
of GIA to projections of sea-level rise has been eval-
uated for the east coast of North America (Love et al.,
2016) and records of past sea-level rise on the west
coast (Shugar et al., 2014) of North America.

There have been several estimates of the contribu-
tion of GIA to sea-level rise in the Humboldt Bay re-
gion (Long and Shennan, 1998; Engelhart et al., 2015).
Due to the latitudinal proximity to the Cordilleran Ice
Sheet during the Last Glacial Maximum, there exists
a latitudinal variation to GIA rates of VLM. Long and
Shennan (1998) estimated this gradient to be 0.25 ±
0.02 mm/year per 100 km. Engelhart et al. (2015)
use sea level index points frommid- to late-Holocene
stratigraphy to estimate the spatial variation in GIA
for the northern pacific coast of North America. GIA
VLM rates range from +0.7 ± 0.8 mm/year in Canada
to −1.5 ± 0.3 mm/year in northern California. Their
revised VLM rate gradient is between 0.1 and 0.15
mm/year per 100 km. In the Humboldt Bay region,
the GIA contribution to SLR may be about 1.5, 1.4,
and 1.3 mm/year at Eel River, Arcata Bay, and Cres-
cent City respectively (Engelhart et al., 2015). While
the rates of GIA derived SLR are significant, and
contribute to the overall SLR rates, there is not a
large variation in GIA across this region (about 0.2
mm/year). GIA effects are superposed on tectonic
deformation, and enhances relative sea level rise in
southern Cascadia, and further diminishes relative
sea level rise in northern Cascadia. The VLM rates
plotted in Figures 5 and 6, Supporting Information SI-
4, and Figures SI-5 and SI-6, and data presented in
Tables 2 and 4, include these GIA adjustments.
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4.2 Tectonic Deformation Sources in
Northern California

There exists evidence elsewhere along the CSZ mar-
gin for interseismic tectonic deformation (Mitchell
et al., 1994;Hyndman andWang, 1995), principally due
to subduction zone tectonics. Some models of the
subduction zone assumed regions of homogeneous
seismogenic locking on the megathrust fault (Flück
et al., 1997; Wang et al., 2003). However, there is
support for spatial variation in the seismogenic cou-
pling along the fault as evidenced by geodetic data
(Mitchell et al., 1994; Verdonck, 2006; McCaffrey et al.,
2013), which may explain the variation in VLM rates
found in benchmark survey studies in Oregon (Bur-
gette et al., 2009) andWashington (Newton et al., 2021),
as well as in studies that also incorporate continuous
GNSS time series and episodic tremor location analy-
sis (Schmalzle et al., 2014). Additional sources for spa-
tial variation in VLM rates could be tectonic deforma-
tion associated with crustal faults in the North Amer-
ica or Gorda plates. Coseismic horizontal motion has
been observed at GNSS sites because of Gorda in-
traplate earthquakes (evidence for seismogenic lock-
ing of themegathrust;Williams andMcPherson, 2006).
Because these faults are strike-slip, and there has
been no observed coseismic vertical motion across
these faults, there is probably a low likelihood these
faults would producemeasurable VLM at the decadal
scale. However, most of the North America plate
crustal faults are thrust or reverse faults.

TheQuaternary fold and thrust belt associatedwith
the accretionary prism of the CSZ comes on land
in the region of Humboldt Bay (Clarke and Carver,
1992). Additional crustal faults in the region are as-
sociated with the northern migration of the Sierra
Nevada Block Williams et al. (2006). Faults in the Mad
River fault zone, Little Salmon fault zone, and the Russ
and Bear River fault zones strike across the geodetic
sites used in this study. These faults are compres-
sional thrust or reverse faults, which may cause in-
terseismic VLM. However, there may be some com-
ponent of oblique slip on these faults in the Hum-
boldt Bay region due to the northernmigration of the
Sierra Nevada block and the Mendocino triple junc-
tion (Williams et al., 2006).

Not all of these faults have been evaluated for
Holocene activity nor do they all have slip rates. Given
the known slip rates, the Little Salmon fault has the
highest paleoseismic slip rate in the region, approxi-
mately 6 mm/year (Carver and Burke, 1988; McCrory,
1996, 2000). The Mad River and Little Salmon fault
zones deformPleistocene landforms likely associated
with strain associated with the CSZ but may also re-
spond to the San Andreas fault system (Williams et al.,
2006). Further south, the Russ fault and Bear River
fault zone are oriented with a more easterly strike so
may accommodate the northward propagating Sierra
Nevada block (north-south compression), but also
may have oblique slip along the southeasterly por-
tions of these faults.

The spatial variation in VLM rates shown in Figure 6

helps us visualize first and possibly second order con-
trols for deformation in this region. We include all
tide gage and level data points but limit the plot to
the GNSS sites closest (relative to trench distance) to
the other two data sets.

VLM rates in Figure 6A show a westward-down
trend in VLM rates in the Humboldt Bay region. This
westward-down, eastward-up trend is most easily
explained by the seismogenic coupling of the CSZ
megathrust and the elastic flexure of theNorth Amer-
ica plate lithosphere as modelled by Hyndman and
Wang (1995), Wang et al. (2003), and Newton et al.
(2021). The locked fault is pulling the lithosphere
downwards in the west and, eastward of the locked
zone, presumably the NAP is compressed and pos-
sibly warping upwards in the east. Sites in Crescent
City are more landward, relative to the locked fault,
than the sites in the Humboldt Bay region. This is
indicative of the distance to the trench, which is fur-
ther offshore of Crescent City. This explains why the
Crescent City sites have a positive VLM rate relative to
Humboldt Bay, presuming the dip of the megathrust
is similar and the along-dip seismogenic coupling pat-
tern is similar between these locations (e.g., Schmal-
zle et al., 2014; Pollitz and Evans, 2017). The sites to
the southeast of the Humboldt Bay region have rel-
ative positive VLM rates and these are unrelated to
CSZ tectonics since they span the southern edge of
the Gorda plate, so may not directly influenced by
the CSZ. There are some outlier sites, but their re-
gional misfit may be explained in some cases based
upon their location. GNSS sites CME6 and P159 (Fig-
ure 3) are located far to the west of the level-line (i.e.,
highway 101) and tide gage data. Because these sites
are closer to the megathrust fault tip (i.e., closer to
the trench), they have negative VLM rates (Figure 6B).
P169 is a GNSS site far to the east of the level data,
so has a larger positive VLM rate than the level data
because it is further away from the megathrust fault
tip (Figure 6B). Other example GNSS sites that are not
proximal to highway 101 are also labeled and one can
see their location plotted on Figure 3 and their rates
on Figure 6.

There are some data point locations that are out-
liers with no obvious explanation. GNSS site P316
and level mark sites located near Mad River and Kla-
math River, show VLM rates that are different from
their surrounding data. The GNSS site P316 VLM rate
is based upon a different time period than the level
data, which may explain the different rate. Though
there remains uncertainty about the cause of this dif-
ference in VLM rate. The level sites near these two
rivers may not be in stable locations, which may ex-
plain the different rate. Perhaps the abutments of the
river bridges may be causing subsidence at these lo-
cations. Other outlier sites are labeled and are ex-
cluded due to the large rate uncertainty, usually be-
cause they are cGNSS sites (see the large error bars in
Figure SI-6, Supporting Information). Some sites are
excluded because they are far away from Highway
101, so make the visualization of the regional down
warping difficult to interpret. We do include the en-
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tire set of data inmap and profile views in Figures SI-5
and SI-6 (Supporting Information).
Preliminary analysis from Blackwell et al. (2020), us-

ing interferometric synthetic aperture radar (INSAR)
data, shows that there is considerable variation in
geodetic motion across the landscape. However,
these data show rates of subsidence that span the up-
lands north of the lower Eel River Valley and the flood-
plain of the lower Eel River Valley without a change
in VLM rate (suggesting that these VLM rates are not
due to factors related to geology like sediment com-
paction or changes in groundwater levels).
Using tide gage, benchmark level, and GNSS obser-

vations to characterize the interseismic plate tectonic
land-level change associated with the southern Cas-
cadia subduction zone (CSZ), we provide fundamen-
tal sea-level rise data for making management deci-
sions as they apply to coastal landscapes. These data
are already being incorporated into hydrodynamic
modeling and inundation vulnerability mapping for
the Humboldt Bay area (Anderson, 2015) and used
as a basis for the Humboldt Bay Area Plan for Sea
Level Rise Vulnerability Assessment (Laird, 2018). The
next step in this process is to develop a viscoelastic
model of this tectonic deformation so that wemay in-
terpolate sea level change for un-observed locations.
Within this framework we will also be able to assess
future coseismic VLM impacts.

5 Conclusion

Trends of sea-level rise at the NS tide gage, previ-
ously thought to be anomalous compared to the CC
tide gage, are consistent with other observations in
Humboldt Bay and resolvable when included in our
regional analyses. The observed gradients in tectonic
deformation directly control the variation of sea-level
rise in this region. However, the detailed spatial vari-
ation of vertical land-level motion rates remains un-
resolved in some parts of the Humboldt Bay region
(between the geodetic observation sites).
We conclude that tide gage, GNSS, and land-level

survey data provide independent observations of tec-
tonic deformation in Northern California which is the
reason for someof the highest and lowest rates of sea
level rise along the coasts of California, Oregon, and
Washington. We conclude that the principal source
for the variation in VLM rates across coastal north-
ern California is due to interseismic deformation as-
sociated with both the CSZ and with North America
crustal faults. We cannot preclude a secondary effect
from interseismic deformation across the lower slip
rate crustal faults in the region nor from additional
variation from non-tectonic sources. We note that
these geodetic data span over a half a century (1967-
2022), and these rates are consistent across the dif-
ferent geodetic methods that span different time pe-
riods. This suggests that the megathrust earthquake
cycle has not changed significantly enough to cause
changes in VLM rate. However, we won’t really know
about the influence that the CSZ earthquake cycle
has on these geodetic data until there is an inter-

face event. Additional work needs to be conducted
to learn more about the potential for non-tectonic
sources of deformation. However, preliminary analy-
sis from Blackwell et al. (2020) suggest that, for some
places, these VLM rates are not due to factors related
to geology.
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GIS ESRI shapefile that shows the location of the sub-
duction zone trench that we used to calculate trench
distance for each geodetic station. These data also
include the tables in a spreadsheet format. We also
include all Supporting Information files.
Fault GIS data are acquired as GIS downloads from

the U.S. Geological Survey Quaternary Fault and Fold
database as downloaded 11 December 2017 from
https://www.usgs.gov/programs/earthquake-hazards/
faults.
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database for the United States, accessed Decem-
ber 11, 2017, at: https://www.usgs.gov/natural-
hazards/earthquake-hazards/faults, https:
//doi.org/10.3133/fs20043033.
GNSS data are downloaded from websites listed

in the GIS database posted on Zenodo. The three
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gps/NCalifornia/p165#itrf2008), the Pacific Northwest
Network (https://earthquake.usgs.gov/monitoring/
gps/Pacific_Northwest_ITRF2014), and the ITRF2014
Northern California network (https://earthquake.usgs.
gov/monitoring/gps/NCalifornia_SGPS_ITRF2014).
Tide gage data are downloaded from the NOAA

website Tides and Currents: https://tidesandcurrents.
noaa.gov/stations.html?type=Water+Levels.
Surveymark data were obtained by visiting the Sil-

ver Spring, Maryland (USA) National Geodetic Sur-
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In addition, surveymark datasheets can be down-
loaded from the NGS website https://geodesy.noaa.
gov/datasheets/.
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