1,237 research outputs found

    Automated water monitor system field demonstration test report. Volume 2: Technical summary

    Get PDF
    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported

    Retrodiction as a tool for micromaser field measurements

    Get PDF
    We use retrodictive quantum theory to describe cavity field measurements by successive atomic detections in the micromaser. We calculate the state of the micromaser cavity field prior to detection of sequences of atoms in either the excited or ground state, for atoms that are initially prepared in the excited state. This provides the POM elements, which describe such sequences of measurements.Comment: 20 pages, 4(8) figure

    Automated water monitor system field demonstration test report. Volume 1: Executive summary

    Get PDF
    A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water

    Distributional Survey of the Fishes of Ten Mile Creek in Southeastern Arkansas

    Get PDF
    A survey of the fishes of Ten Mile Creek was conducted during 1976 to 1979. The ichthyofauna of Ten Mile Creek is typical of lowland drainage systems in southeastern Arkansas. Fifty-three species representing 13 families and 23 genera were collected. Etheostoma parvipinne was locally abundant in the headwaters, and other vulnerable or rare species included Notropls maculatus, Fundulus notti, Fundulus chrysotus, Erimyzon sucetta, Moxostoma poecilurum, and Lepomis punctatus. Eight specimens of Notropis hubbsi were collected

    Development of optical diaphragm deflection sensors

    Get PDF
    The objective of this project was to develop high-temperature pressure sensors using non-metallic components and optical sensing methods. The sensors are to operate over a temperature range from room temperature approx. 20C to 540C, to respond to internal pressure up to 690 kPa, to respond to external pressure up to 690 kPa, and to withstand external overpressure of 2070 kPa. Project tasks include evaluating sensing techniques and sensor systems. These efforts include materials and sensing method selection, sensor design, sensor fabrication, and sensor testing. Sensors are tested as a function of temperature, pressure, overpressure, and vibration. The project results show that high-temperature pressure sensors based on glass components and optical sensing methods are feasible. The microbend optical diaphragm deflection sensor exhibits the required sensitivity and stability for use as a pressure sensor with temperature compensation. for the microbend sensor, the 95% confidence level deviation of input pressure from the pressure calculated from the overall temperature-compensated calibration equation is 3.7% of full scale. The limitations of the sensors evaluated are primarily due to the restricted temperature range of suitable commercially available optical fibers and the problems associated with glass-to-metal pressure sealing over the entire testing temperature range

    Object detection and rangefinding with quantum states using simple detection

    Full text link
    In a noisy environment with weak single levels, quantum illumination can outperform classical illumination in determining the presence and range of a target object even in the limit of sub-optimal measurements based on non-simultaneous, phase-insensitive coincidence counts. Motivated by realistic experimental protocols, we present a theoretical framework for analysing coincident multi-shot data with simple detectors. This approach allows for the often-overlooked non-coincidence data to be included, as well as providing a calibration-free threshold for inferring the presence and range of an object, enabling a fair comparison between different detection regimes. Our results quantify the advantage of quantum over classical illumination when performing target discrimination in a noisy thermal environment, including estimating the number of shots required to detect a target with a given confidence level

    The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    No full text
    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function

    Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    Get PDF
    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions

    The solar wind in time – II. 3D stellar wind structure and radio emission

    Get PDF
    In this work, we simulate the evolution of the solar wind along its main-sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have observationally reconstructed magnetic maps, which are incorporated in our 3D magnetohydrodynamic simulations of their winds. We show that angular-momentum loss and mass-loss rates decrease steadily on evolutionary time-scales, although they can vary in a magnetic cycle time-scale. Stellar winds are known to emit radiation in the form of thermal bremsstrahlung in the radio spectrum. To calculate the expected radio fluxes from these winds, we solve the radiative transfer equation numerically from first principles. We compute continuum spectra across the frequency range 100 MHz to 100 GHz and find maximum radio flux densities ranging from 0.05 to 2.2 μJy. At a frequency of 1 GHz and a normalized distance of d = 10 pc, the radio flux density follows 0.24 (Ω/Ω☉)0.9 (d/[10pc])-2μJy, where Ω is the rotation rate. This means that the best candidates for stellar wind observations in the radio regime are faster rotators within distances of 10 pc, such as κ1 Ceti (0.73 μJy) and χ1 Ori (2.2 μJy). These flux predictions provide a guide to observing solar-type stars across the frequency range 0.1-100 GHz in the future using the next generation of radio telescopes, such as ngVLA and Square Kilometre Array

    Erratum: The solar wind in time II: 3D stellar wind structure and radio emission

    Get PDF
    This is an erratum to the paper ‘The solar wind in time - II: 3D stellar wind structure and radio emission’, which was published in MNRAS, 483(1), 873, 2019 (Ó Fionnagáin et al. 2019)
    corecore